На пути к автоматизированному мета-анализу биомедицинских текстов в области клеточной иммунотерапии
1 Федеральный исследовательский центр «;Информатика и управление »,
РАН, 119333, Москва, пр. 60-лет Октября, 9; *e-mail: devyatkin@isa.ru
2 Институт биомедицинской химии, 119121, Москва, ул. Погодинская, 10
3 Институт биоорганической химии им. Шемякина и Овчинникова, 117997, Москва, ул. Миклухо-Маклая, 16/10
4 Московский научно-исследовательский онкологический институт имени П.А. Герцена -
филиал ФГБУ «НМИЦ радиологии» Минздрава, 125284, Москва, 2-й Боткинский проезд, 3
5 National Cheng Kung University, Tainan City, Taiwan
6 Московский государственный технологический университет «СТАНКИН», 127994, Москва, Вадковский пер., 1
Ключевые слова: злокачественные опухоли; клеточная иммунотерапия; анализ текстов; автоматизированный мета-анализ
DOI:10.18097/BMCRM00109
Клеточная иммунотерапия это перспективный подход к лечению хронических инфекций, аутоиммунных нарушений и злокачественных опухолей. Существует множество стратегий иммунотерапии рака, включая инъекции различных иммунных эффекторных клеток, размноженных и «обученных» в клеточной культуре. В качестве альтернативы для достижения терапевтического эффекта могут быть использованы клетки, представляющие опухолевый антиген на своей поверхности в «понятном» для иммунной системы виде. Результаты исследований в этой области представлены в тысячах текстов, ручной анализ которых затруднен. Мы разработали подход для автоматического анализа текстов в этой области биомедицинской науки. В данной работе мы представляем первые результаты автоматического анализа данных, извлеченных из абстрактов научных статей, доступных в PubMed. На корпусе извлеченных текстов мы демонстрируем ассоциации между типами опухолей и наиболее часто используемыми способами клеточной терапии.
ЗАКРЫТЬ
|
Таблица 1.
Поисковые запросы и количество извлеченных документов для различных типов исследовательских работ.
|
ЗАКРЫТЬ
|
Таблица 2.
Количество извлеченных документов с упоминаниями различных способов иммунотерапии онкологических заболеваний.
|
ЗАКРЫТЬ
|
Таблица 3.
Ассоциативные паттерны способов клеточной иммунотерапии и типов онкологических заболеваний.
|
ЗАКРЫТЬ
|
Таблица 4.
Качественные характеристики разработанной информационной системы для мета-анализов текстов биомедицинской направленности.
|
ФИНАНСИРОВАНИЕ
Работа выполнена при финансовой поддержке РФФИ, гранты16-29-07246 и 16-29-07210.
ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ
К данной статье приложены дополнительные материалы, свободно доступные в электронной версии (http://dx.doi.org/10.18097/BMCRM) на сайте журнала.
ЛИТЕРАТУРА
- Palucka, K., & Banchereau, J. (2013). Dendritic-cell-based therapeutic cancer vaccines. Immunity, 39(1), 38-48. DOI
- Lupatov, A. Yu., Karalkin, P. A., Boyko, A. A., & Yarygin, K. N. (2018). Autotransplantation of T-lymphocytes as a tool for antigen-specific immunotherapy of oncological diseases. Vestnik Transplantologii i Iskusstvennykh Organov, 20(3), 95-104. DOI
- Krallinger, M., Rabal, O., Lourenço, A., Oyarzabal, J., & Valencia, A. (2017). Information retrieval and text mining technologies for chemistry. Chemicalreviews, 117(12), 7673-7761. DOI
- Tsuruoka, Y., Tateishi, Y., Kim, J.-D., Ohta, T., McNaught, J., Ananiadou, S., & Tsujii, J. (2005). Developing a robust part-of-speech tagger for biomedical text. Advances in Informatics, 3746, 382−392.>/li>
- Miyao, Y., & Tsujii, J. (2008). Feature forest models for probabilistic HPSG parsing. computational linguistics, 34(1), 35−80. DOI
- Hina, S., Atwell, E., & Johnson, O. (2010). Secure information extraction from clinical documents using snomed ct gazetteer and natural language processing . International conference for internet technology and secured transactions. IEEE, 1-5.
- Aronson, A. R., & Lang, F. M. (2010). An overview of MetaMap: historical perspective and recent advances. Journal of the American Medical Informatics Association, 17(3), 229–236. DOI
- Jagannatha, A. N., & Yu, H. (2016). Structured prediction models for RNN based sequence labeling in clinical text. Proceedings of the conference on empirical methods in natural language processing. NIH Public Access, 2016, 856–865.
- Mika, S., & Rost, B. (2004). Protein names precisely peeled off free text. Bioinformatics, 20(1), i241−i247. DOI
- McDonald, R., & Pereira, F. (2005). Identifying gene and protein mentions in text using conditional random fields. BMC Bioinformatics, 6(1), S6. DOI
- Zeng, D., Sun, D., Lin, L., & Liu, B. (2017). LSTM-CRF for drug-named entity recognition. Entropy, 19 (6), 283. DOI
- Wang, Y., Liu, S., Afzal, N., Rastegar-Mojarad, M., Wang, L., Shen, F., Kingsbury, P., & Liu, H. (2018). A comparison of word embeddings for the biomedical natural language processing. Journal of Biomedical Informatics, 87, 12-20. DOI
- Shelmanov, A. O., Smirnov, I. V., & Vishneva, E. A. (2015). Information extraction from clinical texts in Russian. Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference “Dialogue”, 14(21), 537-549.
- Yadav, M., & Goyal, N. (2015). Comparison of open source crawlers – a review. International Journal of Scientific and Engineering Research, 2229(5518), 1544-1551.
- Larionov, D., Shelmanov, A., Chistova, E., & Smirnov, I. (2019). Semantic role labeling with pretrained language models for known and unknown predicates. Proceedings of Recent Advances of Natural Language Processing, 620-630. https://github.com/IINemo/isanlp
- Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proceedings of the 20th Very Large Data Base Conference, 487-499.
- Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 12(3), 372–390. DOI
- Rosenberg, S. A., Yang, J. C., Sherry, R. M., Kammula, U. S., Hughes, M. S., Phan, G. Q., & Dudley M. E. (2011). Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clinical Cancer Research, 17(13), 4550-4557. DOI
- Radvanyi, L.G., Bernatchez, C., Zhang, M., Fox, P.S., Miller, P., Chacon, J., & Hwu, P. (2012). Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clinical Cancer Research, 18(24), 6758-6770. DOI
- Kochenderfer, J. N., Wilson, W. H., Janik, J. E., Dudley, M. E., Stetler-Stevenson, M., Feldman, S. A, & Rosenberg, S. A. (2010). Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood, 116(20), 4099-4102. DOI
- Flach, P. (2012). Machine learning: the art and science of algorithms that make sense of data. Book, Cambridge University Press.
- Lin, C., Miller, T., Dligach, D., Bethard, S., & Savova, G. (2019) A BERT-based universal model for both within-and cross-sentence clinical temporal relation extraction. Proceedings of the 2nd Clinical Natural Language Processing Workshop, 65-71. https://www.aclweb.org/ anthology/W19-1908
- Pang, N., Qianm L., Lyu, W., & Yang, J-D. (2019) Transfer learning for scientific data chain extraction in small chemical corpus with BERT-CRF model. arXiv preprint arXiv:1905.05615
- Hakala, K., Kaewphan, S., Salakoski, T., & Ginter, F. (2016) Syntactic analyses and named entity recognition for PubMed and PubMed Central—up-to-the-minute. Proceedings of the 15th Workshop on Biomedical Natural Language Processing, 102-107.
- Lupatov, A. Y., Yarygin, K. N., Panov, A. I., Suvorov, R. E., Shvets, A. V., Volkova, G. D. (2015). Assessment of dendritic cell therapy effectiveness based on the feature extraction from scientific publications. Proceedings of the International Conference on Pattern Recognition Applications and Methods (ICPRAM), 2, 270-276. DOI
- Boyko, A. A., Kaidina, A. M., Kim, Y. C., Lupatov, A. Yu., Panov, A. I., Suvorov, R. E., Shvets, A. V. (2016). A framework for automated meta-analysis: dendritic cell therapy case study. 8th International Conference on Intelligent Systems (IEEE), 8, 160-166. DOI