Biomedical Chemistry: Research and Methods 2022, 5(4), e00179

Selection of the Most Efficient Protocol for the Immunoglobulin Y Extraction from Hen Egg Yolk

V.A. Akhmetzyanov, O.V. Chibiskova, E.F. Kolesanova*

Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; *e-mail: ekaterina.kolesanova@ibmc.msk.ru

Keywords: immunoglobulins Y, extraction and purification, hen egg yolk, delipidation, sodium sulfate precipitation, PAAG electrophoresis

DOI:10.18097/BMCRM00179

The whole version of this paper is available in Russian.

Four protocols of immunoglobulin Y extraction and purification from hen egg yolk were compared and the optimal one was chosen from the viewpoint of the purity and yield of the final protein preparation. The following protocols were tested: 1) three-step treatment of the yolk substance with caprylic acid; 2) delipidation with dextran-sulfate followed by sodium sulfate fractionation; 3) removal of lipids via diluting by acidified water followed by sodium sulfate fractionation and 4) purification of immunoglobulins with the use of egg yolk freezing-thawing. Protein yields were assessed as amounts of the total protein in the final immunoglobulin preparations; purity was assessed via polyacrylamide gel electrophoresis in denaturing (reducing and non-reducing) conditions. The protocol of the immunoglobulin Y extraction with the removal of lipids via diluting by acidified water followed by sodium sulfate fractionation was considered as the optimal one, with regard to the ratio between the protein yield and immunoglobulin preparation purity. This protocol can be employed both for the preparation of immunoglobulin Y samples for further affinity purifications of specific antibodies for research purposes and for the production of immunoglobulins Y as pharmaceutics.

Figure 1. Electrophoregrams of IgY samples in PAAG: a) in reducing conditions; b) in non-reducing conditions.Tracks: 1 – mixture of marker proteins with known molecular masses (molecular mass values are shown to the left from the track 1); 2 – IgY preparation from the CA protocol; 3 – IgY preparation from the FTh protocol; 4 – IgY preparation from the DS protocol; 5 –IgY preparation from the WD protocol. The bands corresponding to IgY (a) and heavy and light IgY chains (b) are marked with arrows.
Figure 2. Electrophoregrams of IgY samples in PAAG: a) in reducing conditions; b) in non-reducing conditions.Tracks: 1 – mixture of marker proteins with known molecular masses (molecular mass values are shown to the left from the track 1); 2 – IgY preparation from the CA protocol; 3 – IgY preparation from the FTh protocol; 4 – IgY preparation from the DS protocol; 5 –IgY preparation from the WD protocol. The bands corresponding to IgY (a) and heavy and light IgY chains (b) are marked with arrows.

CLOSE
Table 1. Characteristics of IgY preparations produced via different protocols.

FUNDING

The work was performed within the framework of the Program for Basic Research in the Russian Federation for a long-term period (2021-2030), theme No.122030100170-5.

REFERENCES

  1. Mine, A., Kovacs-Nolan, J. (2002) Chicken egg yolk antibodies as therapeutics in enteric infectious disease: a review. Journal of Medicinal Food, 5(3), 159–169. DOI
  2. Larsson, A., Karlsson-Parra, A., & Sjöquist, J. (1991) Use of chicken antibodies in enzyme immunoassays to avoid interference by rheumatoid factors. Clinical Chemistry, 37(3), 411–414. DOI
  3. Larsson, A., Wejåker, P. E., Forsberg, P.O., Lindahl, T. (1992) Chicken antibodies: a tool to avoid interference by complement activation in ELISA. Journal of Immunological Methods, 156(1), 79–83. DOI
  4. Bocharova, O.V., Moshkovskij, S.A., Chertkova, R.V., Abdullaev, Z.H., Kolesanova, E.F., Dolgih, D.A., Kirpichnikov, M.P. (2002) Vvedenie biologicheski aktivnyh fragmentov interferona-a2 i insulina v sostav iskusstvennogo belka al'bebetina vliyaet na immunogennost' itogovoj konstrukcii. Voprosy Meditsinskoj Himii, 48(1), 94-102.
  5. Moshkovskii, S.A., Kolesanova, E.F., Archakov, A.I. (2002) Continuous B-epitope maps of cytochrome P450cam (CYP101) obtained by peptide scanning: correlation to spatial structure. Archives of Biochemistry and Biophysics, 398, 269-274. DOI
  6. Lu, Y., Wang, Y., Zhang, Z., Huang, J., Yao, M., Huang, G., Ge, Y., Zhang, P., Huang, H., Wang, Y., Li, H., Wang, W. (2020) Generation of Chicken IgY against SARS-COV-2 Spike Protein and Epitope Mapping. Journal of Immunology Research, 2020, 9465398. DOI
  7. Somasundaram, R., Choraria, A., Antonysamy, M. (2020) An approach towards development of monoclonal IgY antibodies against SARS CoV-2 spike protein (S) using phage display method: A review. International Immunopharmacology, 85, 106654. DOI
  8. Palaniyappan, A., Das, D., Kammila, S., Suresh, M. R., Sunwoo, H. H. (2012) Diagnostics of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid antigen using chicken immunoglobulin Y. Poultry Science, 91(3), 636-642. DOI
  9. Su Y., Sun Y., Zhai Y., Gu L., Li J., Gong L., Chang C., Yang Y. Effects of surfactants on activity and structure of egg yolk antibody. Food and Bioproducts Processing, 132, 167-176. DOI
  10. Redwan, E.M., Aljadawi, A.A., Uversky, V.N. (2021) Simple and efficient protocol for immunoglobulin Y purification from chicken egg yolk. Poultry Science, 100(3), 100956. DOI
  11. Jensenius, J.C., Andersen, I., Hau, J., Crone, M., Koch, C. (1981) Eggs: conveniently packaged antibodies. Methods for purification of yolk IgG. Journal of Immunological Methods, 46(1), 63-68. DOI
  12. Akita, E.M., Nakai, S. (1992) Immunoglobulins from Egg Yolk: Isolation and Purification. Journal of Food Science, 57, 629-634. DOI
  13. Akita, E.M., Nakai, S. (1993) Comparison of four purification methods for the production of immunoglobulins from eggs laid by hens immunized with an enterotoxigenic E. coli strain. Journal of Immunological Methods, 160(2), 207-214. DOI
  14. Wang, X., Li, J., Su, Y., Chang, C., Yang, Y. (2021) Freeze-thaw treatment assists isolation of IgY from chicken egg yolk. Food Chemistry, 364, 130225. DOI
  15. Polson, A., Coetzer, T., Kruger, J., von Maltzahn, E., van der Merwe, K. J. (1985) Improvements in the isolation of IgY from the yolks of eggs laid by immunized hens. Immunological investigations, 14(4), 323-327. DOI
  16. Fishman, J. B., Berg, E. A. (2018) Isolation of IgY from Chicken Eggs. Cold Spring Harbor Protocols, 2018(6). DOI
  17. Ren, H., Yang, W., Thirumalai, D., Zhang, X., & Schade, R. (2016) A comparative evaluation of six principal IgY antibody extraction methods. Alternatives to Laboratory Animals : ATLA, 44(1), 11-20. DOI
  18. Chang, H. M., Lu, T. C., Chen, C. C., Tu, Y. Y., Hwang, J. Y. (2000) Isolation of immunoglobulin from egg yolk by anionic polysaccharides. Journal of Agricultural and Food Chemistry, 48(4), 995-999. DOI
  19. Gassmann, M., Thömmes, P., Weiser, T., Hübscher, U. (1990) Efficient production of chicken egg yolk antibodies against a conserved mammalian protein. FASEB journal, 4(8), 2528-2532. DOI
  20. Pereira, E., van Tilburg, M. F., Florean, E., Guedes, M. (2019) Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. International Immunopharmacology, 73, 293–303.  DOI
  21. Rajesvari, S., Choraria, A., Xiao-Ying Zhang, X.-Y., Antonysamy, M. (2018) Applications of Chicken Egg Yolk Antibodies (IgY) in healthcare: A review. Biomedical Journal of Scientific and Technology Research 2(1), 2161-2163. DOI
  22. Abbas, A. T., El-Kafrawy, S. A., Sohrab, S. S., Azhar, E. (2019) IgY antibodies for the immunoprophylaxis and therapy of respiratory infections. Human Vaccines & Immunotherapeutics, 15(1), 264-275. DOI
  23. Constantin, C., Neagu, M., Diana Supeanu, T., Chiurciu, V., & A Spandidos, D. (2020) IgY - turning the page toward passive immunization in COVID-19 infection (Review). Experimental and Therapeutic Medicine, 20(1), 151–158. DOI
  24. Lyu, J., Bao, L., Shen, X., Yan, C., Zhang, C., Wei, W., Yang, Y., Li, J., Dong, J., Xiao, L., Zhou, X., Li, Y. (2021) The preparation of N-IgY targeting SARS-CoV-2 and its immunomodulation to IFN-γ production in vitro. International Immunopharmacology, 96, 107797. DOI
  25. Aston, E.J., Wallach, M.G., Narayanan, A., Egaña-Labrin, S., Gallardo, R.A. (2022) Hyperimmunized chickens produce neutralizing antibodies against SARS-CoV-2. Viruses 14(7):1510. DOI
  26. Agurto-Arteaga, A., Poma-Acevedo, A., Rios-Matos, D., Choque-Guevara, R., Montesinos-Millán, R., Montalván, Á., Isasi-Rivas, G., Cauna-Orocollo, Y., Cauti-Mendoza, M. G., Pérez-Martínez, N., Gutierrez-Manchay, K., Ramirez-Ortiz, I., Núñez-Fernández, D., Salguedo-Bohorquez, M. I., Quiñones-Garcia, S., Fernández Díaz, M., Guevara Sarmiento, L. A., Zimic, M., COVID-19 Working Group in Perú. (2022) Preclinical Assessment of IgY Antibodies Against Recombinant SARS-CoV-2 RBD Protein for Prophylaxis and Post-Infection Treatment of COVID-19. Frontiers in Immunology, 13, 881604. DOI
  27. Wallach, M. G. (2022). Opinion: The use of chicken IgY in the control of pandemics. Frontiers in Immunology, 13, 954310. DOI
  28. Laemmli, U.K. (1970) Cleavage of structural proteins during the assemblyof the head of bacteriophage T4. Nature; 227, 680-685. DOI
  29. Generalov, I. I., Moiseeva, A. M., Zherulik, S. V., Generalova, A. G., & Zheleznyak, N. V. (2009) Poluchenie vy`sokoochishhenny`x immunoglobulinov klassa g iz sy`vorotki krovi cheloveka. Vestnik Farmacii, 4(46), 52-60.
  30. GelAnalyzer 19.1 by I. Lazar, Jr., and I. Lazar, Sr., URL: www.gelanalyzer.com