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Analysis of protein structures shows that most of them have potential binding sites that may be considered as applicable for new ligand design. 
The lack of known ligands interacting with such binding sites seriously complicated potential ligands selection. We have developed an approach 
that can increase the effectiveness of virtual screening for such ligands. It integrates methods of de novo ligand design, pharmacophore modeling, 
molecular docking, molecular dynamics, calculation of binding energies by MM- GBSA. This approach starts by the de novo design of virtual 
library of potential compounds followed by selection of favourable substructures and their correct positioning in a new ligand binding site. This 
generated library has been used for a development of pharmacophore models that have been used for a virtual screening of molecular databases. The 
selected compounds were docked to the putative binding site to check their ability to accommodate into it and their ability to locate the identified 
favorable fragments in the same region of the binding site as de novo generated molecules. The further evaluation of the selected ligands can be 
carried out by standard CADD methods.
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INTRODUCTION

Computer-aided drug design (CADD) is one of the main 
approaches to the discovery and optimization of new ligands with 
the desired biological activity. A rather complicated situation 
may arise when ligands that bind the desired region of the protein 
are unknown. At present, numerous methods have been proposed 
to identify the potential druggable binding sites. The prediction 
of such sites can be the first step in drug discovery projects [1-5]. 
Such situation often occurs when interface of a protein–protein 
complex [6] or predicted allosteric sites [7] are used as targets.

The main approach currently used to find ligands and 
to estimate their affinity for new binding sites, when known 
ligands are absent, is molecular docking. However, the docking 
scoring functions have a poor ability to correctly predict affinity 
of ligands [8]. It results in numerous false positive and false 
negatives docking results [9-11]. One of the possible ways to 
overcome this problem is to identify structural fragments that 
are able to interact with the desired regions of the binding site. 
A similar approach is used in a fragment-aided drug design 
method. The obtained information about such fragments can be 
used to select compounds from molecular databases during the 
virtual screening.

Prostate cancer (PC) is one of the main causes of death 
among men in developed countries [12]. The numerous efforts 
were aimed to identify the mechanisms of pathogenesis and to 
develop methods of prevention and treatment of this disease. 
At present, there are two main therapeutic approaches to treat 
PC. They include inhibitors of CYP17A1 (abiraterone) and 
antagonists of the androgen receptors (AR) (cyproterone, 
flutamide, bicalutamide) [13, 14].  

In the cytoplasm, AR is complexed with the chaperone 
HSP90 and other proteins. Binding of an agonist to the AR leads to 
conformational changes in the protein followed by dissociation of 
the AR-chaperone complex and subsequent receptor translocation 
into the nucleus. Recently it has been shown that dissociation of 
the AR-HSP90 complex requires additional phosphorylation of 
Thr-90 residue of HSP90 [15]. Phosphorylation is carried out by 
the protein kinase PKA 1. Therefore, the design of compounds 
that prevent Thr-90 phosphorylation of HSP90 may become a 
new promising direction in PC therapy.

Here, we describe an approach to search for ligands to a 
new binding site for which ligands are unknown. This approach 
includes generation of compounds at the selected binding 
site by the de novo design method, followed by generation of 
pharmacophore models based on designed compounds and 
pharmacophore-based screening of a database. At the next stage, 
the compounds that fit the pharmacophore model are docked 
to this binding site. The complexes, which were top-ranked by 
docking position and scoring function, were then proceeded for 
molecular dynamics simulations to estimate their stability. This 
approach has been tested for searching compounds that may 
prevent HSP90 phosphorylation.

MATERIALS AND METHODS

The spatial structure of HSP90 (PDB code 3T0H, resolution 
1.2 Å) was downloaded from PDB [16]. 

De novo design of compounds was done by AutoGrow4 
program [17]. AutoGrow4 starts from the initial population of 
compounds. This initial population, defined as “generation 0”, 
consists of chemically diverse molecular fragments from the 
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AutoGrow library. During the next step, the first generation 
of compounds are designed by applying three operators to the 
structural fragments of the “generation 0” population: elitism, 
mutation, and crossover. Subsequent generations of compounds 
are designed similarly to the previously generation. The elitism 
operator transfers subpopulations of the fittest compounds from 
previous generation to the next generation without change. The 
mutation operator performs a virtual chemical reaction, which 
modifies the parent compound to a new one. Seventy nine of 
the 94 standard AutoGrow4 reactions use two fragments. One of 
the reagents is taken from the previous generation, and the other 
one is taken from the AutoGrow4 molecular fragment libraries. 
The crossover operator combines two fragments taken from 
the previous generation into one new compound. To evaluate 
the affinity of molecular fragments and designed compounds, 
molecular docking is used. By default, the docking program is 
QVina, and the scoring function is the standard scoring function 
of Vina AutoDock.

Pharmacophore models were generated using the 
PharmaGist web service [18]. The following values of weights 
of pharmacophore features were used for the pharamcophore 
design: aromatic – 5.0; anion/cation – 3.0; H-bond donor/
acceptor – 3.0 and hydrophobic – 1.0 (the maximum value for 
each weight is 10.0). The ZINCPharmer web service was used to 
search for potential ligands in the ZINC12 database [19].

Molecular docking was done using AutoDock Vina [20]. 
AutoDock Tools package was used to set docking parameters. 
Binding poses were selected based on their binding affinities 
calculated by the Autodock Vina scoring function. Analysis of 
binding poses was perform using the PLIP server [21]. 

Molecular dynamics calculations (MD) were performed 
using the Gromacs2020 software package [22]. The explicit 
solvent (TIP3P) with addition of Na+ and Cl- ions was used to 
neutralize the system. The Amber99-ILDN forcefield [23] was 
used for atomic parametrization of protein molecules and GAFF 
forcefield for ligands. The systems of solvated protein-ligand 
complexes were minimized for 50000 steps. All systems were 
equillibrated in NVT- and NPT ensembles for 5 ns.  Productive 
dynamics  were simulated on trajectories of 300 ns with a step  

of 2 fs using the Berendsen thermostat [24] and the Parrinello–
Rahman barostat [25] for control of pressure (1 atm) and a 
temperature of the system (300 K). Long-range electrostatic 
interactions were treated with the PME method. The cut-
off value for short-range non-bonded interactions was set to 
12Å.  The LINCS algorithm was used to constraint the bonds 
with hydrogen. Trajectory analysis was performed using the 
Gromacs-2020 built-in tools and VMD-1.9.1 software. 

The molecular mechanics combined with the generalized 
Born and surface area continuum solvation (MM/GBSA) method 
was used to calculate free energies of ligand-protein complexes. 
The main idea of the MM/GBSA method is to calculate separately 
the ligand solvation free energy, the receptor solvation free 
energy, the complex solvation free energy, and the interaction 
energy of the receptor and ligand in vacuum.

The free energy of interaction between the ligand and the 
receptor ΔGbind can be calculated using equation 1

:
ΔGbind = ΔH-TΔS= (ΔEMM+ΔGsolv)-T*ΔS          (1),

where
ΔGsolv  = ΔGp + ΔGnp                                                (2) 

ΔEMM =  ΔEele  +  ΔEvdW                           (3)

Figure1. Average values of the predicted affinities for the generated ligands.

Figure 2. Compounds 1 and 2 in the groove on the surface of HSP90 
near Thr-90.
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ΔEMM is the interaction energy between the ligand and the 
receptor, calculated on the basis of molecular mechanics, ΔEele 
and ΔEvdW are the contributions of electrostatic and van der 
Waal energy, respectively. ΔGsolv is the solvation free energy; 
ΔGp and ΔGnp are the contributions of polar and nonpolar 
interactions to the solvation, respectively. -T*ΔS is the change in 
conformational entropy upon binding,  -T*ΔS is not considered 
in the current work because of a high computational cost of 
entropy calculations and the inclusion of this term does not 
always improve the accuracy of calculations.     

To calculate the enthalpy contribution (ΔH= ΔEMM+ΔGsolv) 
500 frames of the last 50 ns of dynamics were used. 

RESULTS AND DISCUSSION

In this study, we have tested an applicability of the approach 
to search ligands to the new binding sites for which ligands are 
unknown. This approach is based on a pilot generation of new 
compounds by a program for a de novo ligand design. During 
the next step, a set of generated compounds is used to design 

Figure 3. Compounds used for design pharmacophore models.
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a pharmacophore model. The obtained pharmacophore model is 
further used to search potential ligands in a molecular database. 
The resulting focused library of compounds is docked to the 
potential binding site. Such procedure for selection of the focused 
library makes it possible to avoid docking of large databases and 
thus can significantly reduce time costs.

The AutoGrow4 was used to design ligands based on 
the three-dimensional structure of the binding site of HSP90, 
located near Thr-90 (phosphorylation of this residue facilitates 
dissociation of the AR complex with HSP90). The standard 
AutoGrow4 library consisting of ~6100 molecular fragments 
(weight 100-150 Da) was used as the initial population for 
the “generation 0”. During the first generation, the operators 
“mutation” and “crossover” were applied 500 times, in the 
second and subsequent generations these operators were used 
2500 times. The elitism operator selected 500 compounds 
from each previous generation to transfer them to the next one. 
There were ten independent runs of Autogrow4, each of which 
consisted of ten generations. During each generation, more than 
forty thousand compounds were generated. 

The mean and median values of the affinities of the 
generated compounds increased up to the sixth generation in 
the each run; they then fluctuated around -5.4 kcal/mol for the 
average and -5.3 kcal/mol for the median affinities (Figures 1 
and 1S, Supplementary materials, respectively). The maximum 
affinity values increased until the fourth or the fifth generation, 
and then the values reached a plateau (Figure 2S, Supplement 
material). Thus, we conclude that ten generations are enough to 
generate compounds with the maximum predicted affinity for the 
protein of interest. 

However, the generated compounds are absent in available 
molecular databases. To avoid the synthesis of compounds in 
the early stages of a discovery project, the similar compounds 
may be found in molecular databases based on pharmacophore 
models.

The compounds with the highest predicted affinities in 
each generations were selected for analysis. Visual inspection of 
their poses in the binding site showed that most of the generated 

compounds (~30%) had two similar fragments: an aromatic or 
cyclic aliphatic fragment with a nitrogen atom attached to it 
directly or via one carbon atom. This nitrogen atom was located 
near Thr-90 and formed a hydrogen bond with its hydroxyl 
group. Two molecules generated by AutoGrow (1 and 2) located 
along the groove with nitrogen atoms oriented towards Thr-90 
were considered as the basis for generating the pharmacophore 
(Fig. 2). Several compounds (3 – 18) were also selected because 
of the aforementioned substructure and similar position in the 
binding site (Fig. 3). These compounds were additionally docked 
to the binding site to obtain alignment and conformations required 
to design pharmacophore models. The poses of the docked 
molecules coincided with the position of the compounds 1 and 2.

Table 1. Initial pharmacophore models.

Pharmacophore Based on compounds
Number of features

HB-donors HB-acceptors Aromatic Hydrophobic
1 1-6 6 6 5 -
2 7-11 4 4 6 1
3 12-14 6 5 4 -
4 15-17 5 7 2 -

Table 2. Secondary pharmacophore models used for pharmacophore search.

Pharmacophore
Number of features

HB-donors HB-acceptors Aromatic
1.1 1 - 4
1.2 1 - 4
2.1 1 4
3.1 1 1 3
3.2 1 - 4
3.3 1 - 4
4.1 2 3 2

Figure 4. Designed pharmacophore models. a – pharmacophore 1 
(used compounds 1-6), b – pharmacophore 2 (used compounds 7-11), 
c – pharmacophore 3 (used compounds 12-14), d – pharmacophore 4 
(used compounds 15–18). Purple spheres are aromatic fragments, gray 
spheres are H-bond donor, yellow spheres are H-bond acceptors, green 
spheres are hydrophobic fragments.
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Compounds 1 – 18 were used to generate pharmacophores 
using the PharmaGist web service. Initially, four pharmacophore 
models were designed (Table 1). Pharmacophore 1 (Fig. 4a) was 
generated on the basis of molecules 1-6, pharmacophore 2 – 
molecules 7 - 11 (Fig. 4b), pharmacophore3 – molecules 12 - 14 
(Fig. 4c) and pharmacophore 4 – molecules 15 – 18 (Fig. 4d). 
However, the obtained pharmacophore models were too 
complex, and no one compound satisfying these pharmacophore 
models was found in database. This prompted us to simplify 
these models for the second generation of pharmacophore 
models that contained 5-7 pharmacophore features (Table 2). 
The resultant seven secondary pharmacophore models (Figure 
3S, Supplementary materials) were used for pharmacophore 
searches in the ZINC database using the ZINCPharmer web 
service. These searches yield:

(i) 99 compounds based on pharmacophore 1.1;
(ii) 29 compounds based on pharmacophore 1.2;
(iii) 30 compounds based on pharmacophore 2.1;
(iv) 66 compounds based on pharmacophore 3.1;
(v) 6 compounds based on pharmacophore 3.2;
(vi) 297 compounds based on pharmacophore 3.3;
(vii) 267 based compounds on pharmacophore 4.1. 
Thus, 794 compounds fitted the pharmacophore models 

were selected.
Molecular docking was used for initial estimation of the 

ability of selected compounds to interact with binding site. 
The criteria for selecting the docked molecules for subsequent 
analysis based on the following: the values of the scoring function 
were less than -6.0 kcal/mol; molecules formed H-bonds with 
the Thr-90; and the position of the molecules in the binding site 
(preference was given to ones that occupied >50% of the cavity 
surface area). Sixteen compounds were selected. 

To determine the stability of the obtained complexes, 
simulations of molecular dynamics were carried out. Most 
compounds flowed into solution after 2–3 ns simulation, and 
only two complexes (with compounds 19 and 21) were stable. 
Compounds 19 and 21 have a common structural element 
described above: an aromatic ring with an amino group attached 
to it. The amino groups of both compounds were located in a 
cavity near Thr-90 and formed the H-bond with it. In the first 10 
ns of simulation, the RMSD values of the compounds 19 and 21 
reached 9Å. This indicates a shift of the compounds during the 
dynamics from the initial positions predicted by docking (Fig. 5). 

The last 50 ns of the trajectory was used to analyze the 
H-bonds formed between the protein and compounds 19 and 21. 
Compound 21 formed H-bonds with the residues Thr-90, Asn-83, 
Val-222, Glu-223, Glu-178, Lys-224. Although compound 21 
retains the H-bond with the Thr-90 side chain, this bond had 
low stability (7.20% occupancy). Compound 21 formed the 
most stable H-bond with the oxygen atom of the main chain 
Val-222 (occupancy 33.91%). Compound 19 formed H-bonds 
with Asn-83, Glu-223, and Lys-224 residues. The most stable 
H-bonds was between the amino group of compound 19 and 
Glu223 side chain (occupancy 30.38%). Thus, it appears that the 
Thr-90 residue plays an insignificant role in the binding of the 
studied ligands.

Additionally, to evaluate the affinity of compounds 19 
and 21 for HSP90, the binding free energies of HSP90-19 and 
HSP90-21 complexes were calculated using the MM-GBSA 
method. The binding energies for compound 19 and 21 were 
-26.35 kcal/mol and -26.97 kcal/mol, respectively (Table. 3). 
To identify the residues that make the greatest contribution 
to binding, the per-residue free energy decomposition was 
performed. The residues which contribution ≤-1 kcal/mol were 

Figure 5. RMSDs of compounds 19 (ZINC20530423) and 21 (ZINC1126605) during molecular dynamics.

Table 3. Calculated binding free energies using MM–PBSA for complex HSP90 with compounds 19 and 21.

Complex Energy contribution (kcal/mol)
ΔEele ΔEvdw ΔGp ΔGnp ΔEtotal

HSP90-19 -22.68 -35.89 37.31 -5.10 -26.35
HSP90-21 -26.93 -31.75 36.26 -4.56 -26.97

Note. ΔEvdw  – van der Waal energy; ΔEele – electrostatic energy; ΔGp  – polar solvation energy; ΔGnp – nonpolar solvation energy
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taken into the consideration. For compound 19 these residues 
included Asn-79, Ile-81, Asn-83, Val-92, and Phe-221, and for 
the compound 21 these residues included Ile-81, Thr-90, Val-92, 
and Phe-221. For the both complexes, Ile-81 made the greatest 
contribution to the interaction energy. Polar Asn-79 and Asn-83 
make a significant contribution to the binding of the compound 
19. For the compound 21 the only polar residue whose interaction 
energy with the ligand  ≤-1 kcal/mol was Thr90. Calculation of 
ADMET properties showed that both compounds satisfied the 
Lipinski’s rules (Table 4).

The proposed approach allowed us to identify two 
compounds that are potentially able to bind to HSP-90 near the 
Thr-90 residue and to prevent its phosphorylation required for 
the activation of androgen receptor. Method of de novo ligand 
design made it possible to determine the key functional groups 
required for binding to the considered region of the protein. Based 
on these functional groups we designed several pharmacophore 
models which allowed to identify 794 compounds from ZINC12 
database, that fitted to the  pharmacophores. These compounds 
were used for further docking to evaluate their binding affinities. 
It can be seen that our approach allowed to reduce the total 
number of docked compounds from hundreds of thousands or 
even millions molecules to less than 800 structures. It is also 
worth saying that MD simulations are the crucial step to evaluate 
the stability and binding affinity of obtained complexes. Thus, out 
of 16 complexes selected during the docking, only two of them 
turned out to be stable in the course of molecular dynamics. The 
developed approach can be used for discovery of compounds for 
other proteins, for which information of their ligands is absent.

CONCLUSIONS

The protein structures may contain a number of potential 
ligand binding sites (protein-protein interfaces, allosteric sites) 
that may participate in modulation of target protein functions 
and be potential sites for drug development. The lack of known 
ligands and favourable substructures complicates the application 
of computational approaches. In the case of virtual screening 
based on molecular docking, the effective selection of potential 
ligands based on scoring functions is limited by their accuracy. 
Here, we have considered the approach aimed at solving such 
problems. It is based on the method of de novo ligand design. It 
can be expected that repeated de novo design of ligands started 
from random substructures will reveal favorable fragments of 
ligands and their positions in the binding site. The designed 
virtual molecules containing these favourable fragments allow to 
design pharmacophore models that can be used for preliminary 
selection of molecules in molecular databases. The resultant set 
of molecules docked in the binding site to check the ability to 
accommodate in the binding site. The additional criterion for 
correct binding pose is the coincidence of the identified favorable 
fragments in the same region of the binding site that were 
obtained during de novo design. Subsequent evaluation of the 
selected ligands can be carried out by standard CADD methods, 

including molecular dynamics, estimation of binding energy, etc.
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СПОСОБ ПОИСКА ЛИГАНДОВ ДЛЯ НОВЫХ САЙТОВ СВЯЗЫВАНИЯ
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Анализ белковых структур показывает, что большинство из них имеют потенциальные сайты связывания, которые можно 
рассматривать как перспективные для поиска новых лигандов. Однако, отсутствие данных о известных лигандах, взаимодействующих 
с такими сайтами связывания, сильно ограничивают поиску и отбору новых соединений. В данной работе представлен подход для 
повышения эффективности виртуального скрининга. Данный подход объединяет методы дизайна лигандов de novo, построения моделей 
фармакофоров, молекулярный докинг, молекулярную динамику, расчет энергий связывания с помощью MM-GBSA. При использовании 
данного подхода на первом этапе создается виртуальная библиотека потенциальных соединений методом конструирования de novo, с 
последующим отбором эффективных субструктур и их расположения в сайте связывания. На основе которых разрабатываются модели 
фармакофоров, которые используются для виртуального скрининга молекулярных баз данных. Отобранные соединения докируются 
в сайт связывания для проверки их способности размещаться в нем и для оценки совпадения идентифицированных благоприятных 
фрагментов в том же районе сайта связывания, предсказанном при генерации молекул de novo. Дальнейшую оценку выбранных лигандов 
можно проводить стандартными методами компьютерного конструирования лекарств. Предлагаемый подход может способствовать 
эффективному поиску лигандов для новых сайтов связывания.

Ключевые слова: молекулярный докинг, место связывания, модель фармакофора, молекулярная динамика, HSP90, 
конструирование de novo
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