Comparative Analysis of Bioelectrocatalytic Cytochrome P450 3A4 Systems
Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; *e-mail: viktoria.shumyantseva@ibmc.msk.ru
Keywords:electroanalysis, drugs, cytochrome P450 3A4, bioreactor, enzymatic catalysis, electroenzymatic systems, flavin nucleotides, bactosomes
DOI:10.18097/BMCRM00210
This article describes the approaches developed by the authors with the aim to increase the efficiency of electro enzymatic reactions catalyzed by cytochrome P450 3A4. A comparative analysis of cytochrome P450 3A4 systems was carried out during the formation of functional complexes hemoprotein - flavin nucleotides as low-molecular models of NAD(P)H-dependent cytochrome P450 reductase. The formation of a productive enzyme-substrate complex before the stage of receiving electrons from the modified electrode was studied from electocatalytic viewpoint. Incorporation of the enzyme into nanopores of different nature on the electrode (2D-3D transition) was also studied. The results on the electrochemical reduction of bactosomes as functionally active models of the microsomal monooxygenase system are also considered. The electrochemical and electrocatalytic parameters of cytochrome P450
|
Figure 2.
Enzyme-substrate complex formation as the first stage of CYP catalytic cycle and the subsequent addition of an electron.
|
CLOSE
|
Table 1.
Comparison of electroanalytical and electrocatalytical characteristics of the proposed modifications of the electrode surface in order to increase the efficiency of electrocatalysis.
|
FUNDING
The work was performed within the framework of the Program for Basic Research in the Russian Federation for a long-term period (2021-2030) (№122030100168-2).
REFERENCES
- Nikzad, N., Rafiee, M. (2024) Electrochemical Study of Drug Metabolism. Current Opinion in Electrochemistry, 101446. DOI
- Hara, Y., Nagaoka, S. (2019). Pravastatin (Pravachol, Mevalotin). In Drug Discovery in Japan (S. Nagaoka eds.) Springer, Singapore, pp. 35-49. DOI
- Mi, L., Wang, Z., Yang, W., Huan, C., Zhou, B., Hu, Y.; Liu, S. (2023) Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. Trends in Analytical Chemistry, 158, 116791. DOI
- Klyushova, L.S.; Perepechaeva, M.L.; Grishanova, A.Y. (2022) The Role of CYP3A in Health and Disease. Biomedicines, 10, 2686. DOI
- Krishnan, S. (2020) Bioelectrodes for evaluating molecular therapeutic and toxicity properties. Current Opinion in Electrochemistry, 19, 20–26. DOI
- Di Nardo, G., Gilardi, G. (2020) Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity. Trends in Biochemical Sciences, 45(6), 511-525. DOI
- Bernhardt, R., Urlacher, V.B. (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Applied Microbiology and Biotechnology, 98 (14), 6185–6203. DOI
- Sakaki, T. (2012) Practical application of cytochrome P450. Biological and Pharmaceutical Bulletin, 35(6), 844–849. DOI
- Sun, X., Sun, J., Ye, Y., Ji, J., Sheng, L., Yang, D., Sun, X. (2023) Metabolic pathway-based self-assembled Au@MXene liver microsome electrochemical biosensor for rapid screening of aflatoxin B1. Bioelectrochemistry, 151, 108378. DOI
- Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Bulko, T.V., Archakov, A.I. (2018) From electrochemistry to enzyme kinetics of cytochrome P450. Biosensors and Bioelectronics, 15, 192-204. DOI
- Schneider, E., Clark, D. S. (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosensors and Bioelectronics, 39, 1-13, DOI
- Koroleva, P.I, Kuzikov, A.V., Masamrekh, R.A., Filimonov, D.A., Dmitriev, A.V., Zaviyalova, M.G., Rikova, S.M., Shich, E.V., Makhova, A.A., Bulko, T.V., Gilep, A.A., Shumyantseva, V.V. (2021) Modeling of drug-drug interactions between omeprazole and erythromycin in the cytochrome P450-dependent system in vitro. Biomeditsinskaya Khimiya, 15(1), 62–70. DOI
- Gilep, A.A., Guryev, O.V., Usanov, S.A., Estabrook, R.W. (2001) Reconstitution of the enzymatic activities of cytochrome P450s using recombinant flavocytochromes containing rat cytochrome b(5) fused to NADPH–cytochrome P450 reductase with various membrane-binding segments. Archives of Biochemistry and Biophysics, 390(2), 215–221. DOI
- Omura, T., Sato, R. (1964) The Carbon Monoxide-binding Pigment of Liver Microsomes: II. Solubilization, purification, and properties. Journal of Biological Chemistry, 239(7), 2379–2385. DOI
- Nash T. (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochemical Journal, 55(3), 416-421. DOI
- Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Chalenko, Y.M., Vagin, M.Y., Rudakov, Y.O., Shatskaya, M.A., Archakov, A.I. (2011) Electrochemical investigations of cytochromes P450. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814(1), 94-101. DOI
- Ducharme, J., Auclair, K. (2018) Use of bioconjugation with cytochrome P450 enzymes, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1866(1), 32-51, DOI
- Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Archakov, A.I., Makhova, A.A., Shich, E.V., Kukes, V. (2015) Electrocatalytic cycle of P450 cytochromes: the protective and stimulating roles of antioxidants. RSC Advances, 5(87), 71306-71313. DOI
- Shumyantseva, V.V., Koroleva, P.I., Bulko, T.V., Sergeev, G.V., Usanov, S.A. (2022) Predicting drug-drug interactions by electrochemically driven cytochrome P450 3A4 reactions. Drug Metabolism and Personalized Therapy, 37(3), 241-248. DOI
- Shumyantseva, V.V., Bulko, T.V., Koroleva, P.I., Shikh, E.V., Makhova, A.A., Kisel, M.S., Haidukevich I.V., Gilep A.A. (2022) Human Cytochrome P450 2C9 and its polymorphic modifications: electroanalysis, catalytic properties, and approaches to the regulation of enzymatic activity. Processes, 10, 383. DOI
- Agafonova L.E., Bulko T.V., Kuzikov A.V., Masamrekh R.A., Shumyantseva V.V. (2022) Sensors for analysis of drugs, drug-drug interactions, and catalytic activity of enzymes. Bulletin of Russian State Medical University, 1, 41-46. DOI
- Kuzikov, A., Masamrekh, R., Shkel, T., Strushkevich, N., Gilep, A., Usanov, S., Archakov, A., Shumyantseva V. (2019) Assessment of electrocatalytic hydroxylase activity of cytochrome P450 3A4 (CYP3A4) by means of derivatization of 6β-hydroxycortisol by sulfuric acid for fluorimetric assay. Talanta, 196, 231–236. DOI
- Masamrekh, R.A., Kuzikov, A.V., Haurychenka, Y.I., Shcherbakov, K.A., Veselovsky, A.V., Filimonov, D.A., Dmitriev, A.V., Zavialova, M.G., Gilep, A.A., Shkel, T.V., Strushkevich, N.V., Usanov, S.A., Archakov, A.I., Shumyantseva V.V. (2020) In vitro interactions of abiraterone, erythromycin, and CYP3A4: implications for drug-drug interactions. Fundamental and Clinical Pharmacology, 34, 120-130. DOI
- Makhova, A.A., Shikh, E.V., Bulko, T.V., Gilep ,A.A., Usanov, S.A., Shumyantseva, V.V. (2020) No effect of lipoic acid on catalytic activity of cytochrome P450 3A4. Drug Metabolism and Personalized Therapy, 35(3), 20200105. DOI
- Masamrekh, R., Kuzikov, A., Veselovsky, A., Toropygin, I., Shkel, T., Strushkevich, N., Gilep, A., Usanov, S., Archakov, A., Shumyantseva, V. (2018) 17α-hydroxylase, 17(20)-lyase (CYP17A1) inhibitors – abiraterone and galeterone – interact with human sterol 14α-demethylase (CYP51A1). Journal of Inorganic Biochemistry, 186, 24–33. DOI
- Kuzikov, A.V., Bulko, T.V., Koroleva, P.I., Masamrekh, R.A., Babkina, S.S., Gilep, A.A., Shumyantseva, V.V. (2020) Cytochrome P450 3A4 as a Drug Metabolizing Enzyme: the Role of Sensor System Modifications in Electocatalysis and Electroanalysis. Biomeditsinskaya Khimiya, 14(3), 252–259. DOI
- Shumyantseva, V.V., Agafonova, L.E., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Yuan, Ji., Pergushov, D.V., Sigolaeva, L.V. (2021) Electroanalysis of Biomolecules: Rational Selection of Sensor Construction. Biochemistry (Moscow). Special issue. Biological Chemistry reviews, 86(Suppl.1), S140-S151. DOI
- Guengerich, F.P. (2021) Drug Metabolism: Cytochrome P450, In Reference Module in Biomedical Sciences, Elsevier, Netherlands. DOI
- Lamb, D.C., Waterman, M.R., Kelly, S.L., Guengerich, F.P. (2007) Cytochromes P450 and drug discovery. Current Opinion in Biotechnology, 18(6), 504-512. DOI
- Bavishi, K., Laursen, T., Martinez, K.L., Møller, B.L., Della Pia, E.A. (2016) Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Scientific Reports, 6, 29459. DOI
- Koroleva, P.I., Bulko, T.V., Agafonova, L.E., Shumyantseva, V.V. (2023) Catalytic and Electrocatalytic Mechanisms of Cytochromes P450 in the Development of Biosensors and Bioreactors. Biochemistry (Moscow), 88(10), 1645-1657. DOI
- Shumyantseva V.V., Koroleva P.I., Bulko T.V., Shkel T.V., Gilep A.A., Veselovsky A.V. (2023) Approaches for increasing the electrocatalytic efficiency of Cytochrome P450 3A4. Bioelectrochemistry, 149, 108277. DOI
- Rusling, F., Wang, B., Yun, S. (2008). Electrochemistry of redox enzymes, In Bioelectrochemistry: Fundametals, In Experimental Techniques and Applications (P.N. Bartlett ed.), John Wiley & Sons Ltd., New Jersey, pp. 39–85. DOI
- Gray, J.J. (2004) The interaction of proteins with solid surfaces. Current Opinion in Structural Biology, 14, 110-115. DOI
- Shumyantseva, V.V., Koroleva, P.I., Bulko, T.V., Agafonova, L.E. (2023) Alternative electron sources for cytochrome P450s catalytic cycle: biosensing and biosynthetic application. Processes, 11, 1801. DOI
- Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Philippova, T.A., Koroleva, P.I., Agafonova, L.E., Bulko, T. V., Archakov, A.I. (2022) Enzymology on an electrode and in a nanopore: analysis algorithms, enzyme kinetics and perspectives. BioNanoScience, 12, 1341-1355. DOI
- Shangguan, L., Wei, Y., Liu, X., Yu, J., Liu, S. (2017) Confining a bi-enzyme inside the nanochannels of a porous aluminum oxide membrane for accelerating the enzymatic reactions. Chemical Communications, 53, 2673-2676. DOI
- Mie, Y., Ikegami, M., Komatsu, Y. (2016) Nanoporous Structure of Gold Electrode Fabricated by Anodization and Its Efficacy for Direct Electrochemistry of Human Cytochrome P450. Chemistry Letters, 45, 640–642. DOI
- Dai, Q., Yang, L., Wang, Y., Cao, X., Yao, C., Xu, X. (2020) Surface charge-controlled electron transfer and catalytic behavior of immobilized cytochrome P450 BM3 inside dendritic mesoporous silica nanoparticles. Analytical and Bioanalytical Chemistry, 412, 4703-4712. DOI
- Xu, X., Zheng, Q., Bai, G., Dai, Q., Cao, X., Yao, Y., Liu, S., Yao, C. (2018) Polydopamine functionalized nanoporous graphene foam as nanoreactor for efficient electrode-driven metabolism of steroid hormones. Biosensors and Bioelectronics, 119, 182-190, DOI
- Lu, J., Li, H., Cui, D., Zhang, Y., Liu, S. (2014) Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO₂ nanotube arrays. Analytical Chemistry, 86, 8003–8009. DOI
- Meyer, N., Abrao-Nemeir, I., Janot, J.-M., Torrent, J, Lepoitevin, M, Balme, S (2021) Solid-state and polymer nanopores for protein sensing. Advances in Colloid and Interface Science, 298, 102561. DOI
- Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F., Walde, P. (2016) Enzymatic reactions in confined environments. Nature Nanotechnology, 11, 409-420. DOI
- González-Davis, O., Chauhan, K., Zapian-Merino, S., Vazquez-Duhalt, R. (2020) Bi-enzymatic virus-like bionanoreactors for the transformation of endocrine disruptor compounds. International Journal of Biological Macromolecules, 146, 415-421. DOI
- Kumar, R., Sharma, D., Kumar, V., Kumar, R. (2018) Factors defining the effects of macromolecular crowding on dynamics and thermodynamic stability of heme proteins in-vitro. Archives of Biochemistry and Biophysics, 654, 146–162. DOI
- Shumyantseva, V.V., Koroleva, P.I., Gilep, A.A., Napolskii, K.S., Ivanov, Yu.D., Kanashenko, S.L., Archakov, A.I. (2022) Increasing the efficiency of cytochrome P450 3A4 electrocatalysis using electrode modification with spatially ordered anodic aluminum oxide-based nanostructures for investigation of metabolic transformations of drugs. Doklady Biochemistry and Biophysics, 506, 215-219, DOI
- Koroleva, P.I., Gilep, A.A., Kraevskiy, S.V., Tsybruk, T.V., Shumyantseva, V.V. (2023) Improving the efficiency of electrocatalysis of cytochrome P450 3A4 by modifying the electrode with membrane protein streptolysin O for studying the metabolic transformations of drugs. Biosensors, 13, 457. DOI
- Nerimetla, R., Krishnan, S. (2015) Electrocatalysis by subcellular liver fractions bound to carbon nanostructures for stereoselective green drug metabolite synthesis. Chemical Communications, 51, 11681-11684. DOI
- Xu, X., Bai, G., Song, L., Zheng, Q., Yao, Y., Liu, S., Yao, C. (2017) Fast steroid hormone metabolism assays with electrochemical liver microsomal bioreactor based on polydopamine encapsulated gold-graphene nanocomposite. Electrochimica Acta, 258, 1365-1374. DOI
- Nerimetla, R., Premaratne, G., Liu, H., Krishnan, S. (2018) Improved electrocatalytic metabolite production and drug biosensing by human liver microsomes immobilized on amine-functionalized magnetic nanoparticles. Electrochimica Acta, 280, 101-107. DOI
- Nerimetla, R., Walgama, C., Singh, V., Hartson, S.D., Krishnan, S. (2017) Mechanistic insights on the voltage-driven biocatalysis of a cytochrome P450 bactosomal film on a self-assembled monolayer. ACS Catalysis, 7, 3446-3453. DOI
- Archakov, A.I. (1975) Microsomal oxidation. Nauka, Moscow, 327 p.
- Panicco, P., Castrignanò, S., Sadeghi, S.J., Di Nardo, G., Gilardi, G. (2021) Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response. Bioelectrochemistry, 138, 107729. DOI
- Walgama, C., Nerimetla, R., Materer, N.F., Schildkraut, D., Elman, J.F., Krishnan, S. (2015) A Simple Construction of Electrochemical Liver Microsomal Bioreactor for Rapid Drug Metabolism and Inhibition Assays. Analytical Chemistry, 87(9), 4712–4718. DOI