Biomedical Chemistry: Research and Methods, 2018, 1(3), e00025
The 40th Anniversary of the Institute of Physiologically Active Compounds of the Russian Academy of Sciences

NMR Study of the Complex Formation in Solution

V.O. Zavelsky*, I.P. Kalashnikova, V.P. Kazachenko, V.E. Baulin, O.A. Raevsky

Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia;*e-mail:

Key words: NMR spectroscopy, complex formation; ligand; crown ethers; podand; сyclen

DOI: 10.18097/BMCRM00025

The whole version of this paper is available in Russian.

NMR spectroscopy has been used to study the complexation of organic ligands, that are of interest for biology and medicine, with ions of biologically significant metals (Li+, Na+, Ca2 +, Ga3+). The possibilities and advantages of NMR spectroscopy methods in the study of complex formation are shown. A high sensitivity of the NMR signal to the formation of a complex even with a very small natural concentration of the magnetic isotopes is detected. The formation of a complex with a low stability constanthas has been found by 43Ca NMR spectroscopy. The equilibrium constants of the complexes and the parameters of their NMR spectra are obtained. The possibility of using the 31P and 13C NMR method for initial testing of the complexation of cyclene derivatives with the cation Ga3 + in D2O is shown.

Figure 1. Ligand (L)-concentration-dependent 43Са (δ43Са) chemical shifts.

I: L= 15- crown-5; 1 - СаСl2 exp., б- calc.); 2 - Са(NО3)2  (а - exp., б- calc.). II: L= 18- crown-6; salt - СаСl2; 1- с0= 0,2 мol/L, 2- с0= 0,5 мol/L.
III: L= 18-
crown-6; salt - Са (NО3)2; 1 - с0= 0,2 мol/L, 2 - с0= 0,3 мol/L, 3 - с0С 0,5 мol/L.


Figure 2. Phosphoryl-containing acyclic podand I.

Figure 3. Dependences of the chemical shift in NMR spectra of 7Li(а) and 23Na (b) on the ratio С0L/C0M of podand I.

Figure 4. Substituted cyclen II (a) and assumed structure models of Ga3 +compound complex (b).

Figure 5. NMR 31P {H} spectra of free cyclen II (a), spectra obtained by adding 0.1 mol (b), 0.2 mol (c), 0.5 mol (d) and 1.0 mol (e) Ga (NO3) 3 to the initial solution, at T = 298 K.

Figure 6. NMR 13C {H} spectra of ligand IV: initial ligand (a); with the addition of 0.2 (b) and 0.5 (c) molar equivalents of Ga (NO3)3.

Table 1. The calculated parameters of the complexes СаСl2 and Са(NО3)2 with 15-crown-5 and their standard deviations. 

Table 2. The logarithms of the equilibrium constants and the chemical shifts of complex formation between 18-crown-6 and СаСl2 и Са(NО3)2 in water.

Table 3. Logarithms of the stability constants and chemical shifts of the complexes of tripodand I (L) with LiNCS and NaNCS in acetonitrile at 288 ± 1 K.


This work was implemented within the framework of State task 2018 (№ 0090-2017-0024 and 0081-2014-0015), Russian Foundation for Basic Research (grant № 18-03-00743) and partial financial support by the Program for Basic Research № 38.


  1. Duca G. (2012). Homogeneous Catalysis with Metal Complexes: Fundamentals and Applications. Springer Science & Business Media, DOI
  2. Sasmal P. K, Streu C. N, Meggers E. (2013). Metal complex catalysis in living biological systems. Chem Commun (Camb), 49(16), 1581-1587. DOI
  3. Al Zoubi W. (2013). Solvent extraction of metal ions by use of Schiff bases. Journal of Coordination Chemistry, 66(13), 2264-2289. DOI
  4. Zhang Z., Buffle J., van Leeuwen H. P., Wojciechowski K. (2006). Roles of Metal Ion Complexation and Membrane Permeability in the Metal Flux through Lipophilic Membranes. Labile Complexes at Permeation Liquid Membranes. Analytical Chemistry, 78(16), 5693-5703 DOI
  5. Hamilton A.D., Fan E., van Arman S., Vicent C., Tellado F. G., Geib S. J. (1993). Molecular recognition. Design of new receptors for complexation and catalysis. Supramolecular Chemistry, 1(3-4), 247-252. DOI
  6. Vendsborg P. B., Vilstrup H. (1976). The Influence of Lithium on Carbohydrate and Lipid Metabolism in the Perfused Rat Liver. Acta Pharmacologica et Toxicologica, 38(1), 10-16. DOI
  7. Kaas G. A., Kasuya J., Lansdon P., Ueda A., Iyengar A., Wu C.-F., Kitamoto T. (2016). Lithium-Responsive Seizure-Like Hyperexcitability Is Caused by a Mutation in the Drosophila Voltage-Gated Sodium Channel Gene paralytic. eNeuro, 3(5), 1-23. DOI
  8. de Sousa R. T, Streck E. L, Zanetti M. V, Ferreira G. K, Diniz B. S, Brunoni A. R, Busatto G. F, Gattaz W. F, Machado-Vieira R. (2015). Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes. Psychopharmacology, 232(1), 245-50. DOI
  9. Freeman M. P., Freeman S. A. (2006). Lithium: Clinical Considerations in Internal Medicine. The American Journal of Medicine, 119(6), 478–481. DOI
  10. Baum R. P., Rosch F. (2013). Theranostics, Gallium-68, and other radionuclides. Heidelberg, New York, Dordrecht, London: Springer. DOI
  11. Velikyan I. (2015). Continued rapid growth in (68) Ga applications: update 2013 to June 2014. J. Label Compd. Radiopharm., 58(3), 99-121. DOI
  12. Larenkov A. A., Kodina G. E., Bruskin A. B. (2011). Gallium Radionuclides in Nuclear Medicine: Radiopharmaceuticals Based on 68Ga. Ìedical Radiology and Radiation Safety, Russian edition 56(5), 56-73.
  13. Welch M.J., McCarthy T.J. (2000). The potential role of generator-produced radiopharmaceuticals in clinical PET. The Journal of Nuclear Medicine, 41(2), 315–317.
  14. Hughes M.N. (1983). The Inorganic Chemistry of Biological Processes. John Willey and Sons Chichester, New York, Brisbane, Toronto.
  15. Martell A. E. (1981). Chemistry of Carcinogenic Metals. Environmental Health Perspectives 40, 207-226.
  16. Lehn J.M. (1979). Macrocyclic receptor molecules: Aspects of chemical reactivity. Investigations into molecular catalysis and transport processes. Pure and Applied Chemistry, 51 (5), 979-997.
  17. Bogatsky A.V. (1983). Achievements and New Trends in the Chemistry of Synthetic Macrocyclic Complexons. Russian Journal of Bioorganic Chemistry (Bioorganicheskaya khimiya), Russian edition 9(11), 1445-1482.
  18. Peters S. J., Stevenson C. D. (2004). The Complexation of the Na+ by 18-Crown-6. Studied via Nuclear Magnetic Resonance. J. Chem. Education, 81(5), 715-720. DOI
  19. M. Shamsipur, M. Irandoust (2012). 7Li-NMR study of the stoichiometry, stability and exchange kinetics of Li+ ion with 12-Crown-4, 15-Crown-5 and cryptands C222, C221 and C211 in 50% ionic liquid–acetonitrile mixtures. Polyhedron 31(1), 395-401. DOI
  20. Wadas T. J., Wong E. H, Weisman G. R., Anderson C. J. (2010). Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev., 110(5), 2858-2902. DOI
  21. Esteves C. V., Madureira J., Lima L. M. P., Mateus P., Bento I., Delgado R. (2014). Gallium(III) Complexes of trans-Bis(2-hydroxybenzyl) Cyclen Derivatives: Absence of a Cross-Bridge Proves Surprisingly More Favorable. Inorg. Chem., 53(9), 4371-4386. DOI
  22. Fielding L. (2007). NMR methods for the determination of protein–ligand dissociation constants. Progress in Nuclear Magnetic Resonance Spectroscopy, 51(4), 219–242. DOI
  23. Tsebrikova G. S., Baulin V. E., Kalashnikova I. P., Tsivadze A. Y., Ragulin V. V., Zavel'skii V. O., Maruk A. Y., Lunev A. S., Klement’eva O. E., Kodina G. E. (2015). Cyclen-containing phosphonic acids as components of osteotropic 68Ga radiopharmaceuticals. Russian Journal of General Chemistry, 85(9), 2071–2079. DOI
  24. Solov'ev V.P., Baulin V.E., Strakhova N.N., Govorkova L.V. (1994). Thermodynamics and selectivity of complexation of lithium and sodium thiocyanates wich phosphorus-contaning podands and compounds modeling the terminal groups of these podands. Russian Chemical Bulletin, 43(9), 1493-1499. DOI
  25. Baulin V. E., Solov'ev V. P., Strakhova N. N., Kazachenko V. P., Zavel'skii V. O. (1996). Complexation of neutral phosphoryl-containing tripodandtris[(o-diphenylphosphinoylmethyl)phenoxyethyl]amine and analysis of its cationic selectivity to lithium, sodium, and potassium in acetonitrile: Lithium selectivity and polynuclear complexes. Russian Journal of Coordination Chemistry, 22(4), 238-244.
  26. Lazar I., Hrncir D.C., Kim W.-D., Kiefer G.E., Sherry A.D. (1992). Optimized synthesis, structure, and solution dynamics of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonic acid) (H8DOTP). Inorg. Chem., 31(21), 4422-4424. DOI
  27. Novikov V. P., Raevskii O. A. (1983). Calculation of equilibria in solutions by combined treatment of data from different physicochemical methods. Russian Chemical Bulletin, 32(6), 1208-1212. DOI DOI
  28. Himmelblau D. M. (1976). Applied nonlinear programming. New York [etc.]: McGraw-Hill.
  29. Hartley F. R., Burgess C., Alcock R. M. (1983). Solution equilibria. (Chichester etc.).
  30. Solov'ev V. P., Govorkova L. V., Raevskii O. A., Baulin V. E., Syundyukova V. K., Tsvetkov E. N. (1991). Phosphorus-containing podands. 6. Calorimetric study of complexation of 1,17-bis (diphenylphosphinyl)-3,6,9,12,15-pentaoxaheptadecane with alkali and alkaline-earth metal salts in acetonitrile. Bulletin of the Academy of Sciences of the USSR. Division of Chemical Sciences, 40(3), 497-502. DOI
  31. Zavelsky V. O., Kazachenko V. P., Novikov V. P., Solov’ev V. P., Raevsky O. A. (1986). Russian Journal of Coordination Chemistry (Koordinatsionnaya Khimiya), Russian edition 12(8), 1060-1062.
  32. Efimov A. I, Belorukova L. P, Vasilkova I. V, Chechev V. P. (1983). Properties of inorganic compounds. Reference book. Leningrad. Chemistry. p. 383.
  33. Tsebrikova G. S., Baulin V. E., Kalashnikova I. P., Ragulin V. V., Zavelsky V. O., Maruk A.Y., Klementyeva O. E., Kodina G. E., Tsivadze A.Y. (2015). Synthesis of cyclene-phosphonic acid derivatives and preliminary investigation of Ga3+ binding by NMR and TLC. The Journal of Nuclear Medicine, 56(5), (supplement 2), 23. DOI