PROTOCOLS FOR PROTEOMIC ANALYSIS: ISOLATION, SOLUBILIZATION AND HYDROLYSIS BY PROTEASES
1Skolkovo Institute of Science and Technology, 30c1 Bolshoi Boulevard, Moscow, 121205 Russia
2Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119435 Russia; *e-mail: victor.zgoda@gmail.com
Keywords: proteomics; protein solubilization; highly specific protease; protocol
DOI:10.18097/BMCRM00277
High-throughput studies of protein composition of biological samples have become routine and are used practically in all areas of life sciences. Modern proteomics methods allow reliable identification and quantification of thousands of proteins in a single experiment. The standard procedure for proteomic analysis includes the following steps: 1. isolation and solubilization of proteins, their hydrolysis by proteases; 2. analysis of the resulting peptides by high-performance liquid chromatography with mass spectrometric detection; 3. bioinformatics and statistical processing of the results. This paper presents protocols of the first stage of proteomic analysis, i.e. sample preparation, which are routinely used in the Laboratory of Systems Biology of the Institute of Biomedical Chemistry.
Table 1. The enzymes most commonly used in proteomics.
Enzyme |
Cleavage site |
рН optimum |
Buffer |
Trypsin |
Arg-X, Lys-X*. -Lys-Pro- and -Arg-Pro- are trypsin-resistant. |
7.5** |
50 mM ТЕАB*** |
Chymotrypsin |
Chymotrypsinogen A. Cleaves at the C-terminal Tyr, Trp, Phe, partially - C-terminal Leu, Met, Ala, Asp. |
7.8 – 8 |
50 mM ТЕАB |
Lys-C |
Lysyl endopeptidase. Cleaves at the C-terminus of lysine. |
7 – 9 |
50 mM ТЕАB |
Glu-C |
Glutamyl peptidase. Specificity depends on buffer composition. In ammonium bicarbonate (pH 7-8) or ammonium acetate (pH 4) it cleaves Glu-X bonds. In phosphate buffers (pH 7.8-8.5) it cleaves Glu-X, Asp-X bonds. |
4 or 8 |
50 mM ТЕАB |
Asp-N |
Peptidyl-Asp metallopeptidase. Cleaves at the arginine N-terminus. |
4 – 9 |
|
Lys-N |
Peptidyl-Lys metalloendopeptidase. Cleaves at the lysine N-terminus. |
9.5 |
50 mM ТЕАB |
Pepsin |
Non-specific enzyme. Most rapidly hydrolyzes peptide bonds of aromatic amino acids. |
1 – 4 **** |
40 mN HCl or 100 mM Na-citrate buffer |
Arg-C |
Clostripain. Cleaves at the arginine C-terminus. |
7 – 8 |
50 mM ТЕАB |
Papain |
Plant “pepsin”. Hydrolyzes amides, peptides, proteins with unsubstituted amino groups. |
Working pH 3-12, optimal pH 5-8 |
50 mM Na-phosphate buffer, 50 mM L-cysteine, 2 mM EDTA |
IdeZ |
Recombinant enzyme, recognizes human, sheep, monkey and rabbit antibodies. Specifically cleaves antibodies into Fab and Fc fragments. |
6.6 |
50 mM Na-phosphate buffer, 150 mM NaCl |
Note: *X – any amino acid residue; ** pH is adjusted with sodium hydroxide; *** TEAB - triethylammonium bicarbonate; **** pH is adjusted with 1 N hydrochloric acid
Table 2. Recommendations for the selection of protocols for sample preparation in proteomic experiments
Sample |
Minimum required sample quantity |
Recommended protocols |
Ref. |
Bacteria |
1 million cells |
Protocol 7 or Protocol 8 |
|
Eukaryotic cells |
0.2 – 1 million cells |
Protocol 1 or Protocol 9 |
|
Brain cells, Fat cells |
0.2 – 1 million cells |
Protocol 3 (or Protocol 5) -> Protocol 7 or Protocol 8 |
|
Tissues |
0.2 – 1 mg |
Protocol 7 or Protocol 8 |
|
Membrane fractions of cells, nuclei |
0.050 – 0.1 mg |
Protocol 3 -> Protocol 7 or Protocol 8 |
|
Biological fluids: |
|
||
Plasma / serum |
0.01 – 0.05 ml |
Protocol 1 or Protocol 9 |
|
Urine |
5 ml |
Protocol 5 -> Protocol 1 |
[29] |
Spinal fluid |
0.1 ml |
Protocol 1 |
|
Saliva |
0.5 – 1 ml |
Protocol 1 |
[32] |
Tears, eye fluid |
0.050 – 0.1 ml |
Protocol 1 |
[33] |
Food (milk, sausages, meat, fish, invertebrates, eggs, mucus, biofilms, etc.) |
Usually present in excess |
Protocol 3 (or Protocol 5) -> Protocol 7 or Protocol 8 Protocol 4 |
|
Purified fractions / proteins |
10 – 50 µg |
Protocol 1 Protocol 6**, 8 |
|
Purified antibody |
10 – 50 µg |
Protocols 1, 10 – 14 |
|
Note: *If the preparation contains high concentrations of detergents, glycine, imidazole and other compounds used for protein storage and isolation.
Table 3. Preparation of calibrants for measuring protein concentration using the BCA method on a spectrophotometer CLARIOStar
№ |
Calibrant concentration, µg/mL |
Volume of stock solution |
Water, µl |
Protein concentration after addition of 1 ml BCA, µg/ml |
1 |
2 |
2 µl of Solution 2 |
28 |
0.066 |
2 |
5 |
5 µl of Solution 2 |
25 |
0.166 |
3 |
10 |
10 µl of Solution 2 |
20 |
0.33 |
4 |
25 |
2.5 µl of Solution 1 |
27.5 |
0.83 |
5 |
50 |
5 µl of Solution 1 |
25 |
1.66 |
6 |
75 |
7.5 µl of Solution 1 |
22.5 |
2.5 |
Blank |
0 |
0 |
30 |
0 |
Table 4. Preparation of calibrants for measuring peptide concentration using the Pierce Quantitative Colorimetric Peptide Assay kit
Calibrant |
Stock solutions volumes |
Water, µl |
Calibrant concentration, µg/µl |
1 |
Stock |
|
1000 |
2 |
10 µl of Stock |
10 |
500 |
3 |
10 µl of calibrant 2 |
10 |
250 |
4 |
10 µl of calibrant 3 |
10 |
125 |
5 |
10 µl of calibrant 4 |
10 |
62,5 |
6 |
10 µl of calibrant 5 |
10 |
31,3 |
7 |
10 µl of calibrant 6 |
10 |
15,6 |
Blank |
0 |
20 |
0 |
FUNDING
The work was carried out within the framework of the Russian Federation fundamental research program for the long-term period for 2021-2030 (№-122030100168-2).
REFERENCES
- Kahn, P. (1995) From genome to proteome: looking at a cell’sproteins. Science (New York, N.Y.), 270(5235), 369–370. DOI
- Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M. (2006) In-geldigestion for mass spectrometric characterization of proteins and proteomes.Nature Protocols, 1(6), 2856–2860. DOI
- Thanou, E., Koopmans, F., Pita-Illobre, D., Klaassen, R.V., Özer, B.,Charalampopoulos, I., Smit, A.B., Li, K.W. (2023) Suspension TRAPping Filter(sTRAP) Sample preparation for quantitative proteomics in the low μg inputrange using a plasmid DNA micro-spin column: analysis of the hippocampusfrom the 5xFAD Alzheimer’s disease mouse model. Cells, 12(9), 1242. DOI
- Wiśniewski, J.R., Zougman, A., Nagaraj, N., Mann, M. (2009) Universalsample preparation method for proteome analysis. Nature Methods, 6(5),359–362. DOI
- Ji, Y., Liu, M., Bachschmid, M. M., Costello, C. E., Lin, C. (2015). Surfactant-Induced Artifacts during Proteomic Sample Preparation. Analytical chemistry,87(11), 5500–5504. DOI
- Pirmoradian, M., Budamgunta, H., Chingin, K., Zhang, B., Astorga-Wells,J., Zubarev, R.A. (2013) Rapid and deep human proteome analysis by singledimensionshotgun proteomics. Molecular & Cellular Proteomics: MCP, 12(11),3330–3338. DOI
- Saveliev, S.V., Woodroofe, C.C., Sabat, G., Adams, C.M., Klaubert, D., Wood,K., Urh, M. (2013) Mass spectrometry compatible surfactant for optimizedin-gel protein digestion. Analytical Chemistry, 85(2), 907–914. DOI
- Danko, K., Lukasheva, E., Zhukov, V.A., Zgoda, V., Frolov, A. (2022)Detergent-assisted protein digestion-on the way to avoid the key bottleneck ofshotgun bottom-up proteomics. International Journal of Molecular Sciences,23(22), 13903. DOI
- Tsiatsiani, L., Heck, A.J. (2015) Proteomics beyond trypsin. The FEBSJournal, 282(14), 2612–2626. DOI
- Kazieva, L. S., Farafonova, T. E., Zgoda, V. G. (2023) Proteomika antitel[Antibody proteomics]. Biomeditsinskaya Khimiya, 69(1), 5–18. DOI
- PEPTIDEMASS - a World-Wide Web accessible tool for peptidecharacterization. Retrieved May 7, 2025, from: https://web.expasy.org/peptide_mass
- Fragment Ion Calculator. Retrieved May 7, 2025, from:http://db.systemsbiology.net:8080/proteomicsToolkit/FragIonServlet.html
- Karneyeva, K., Kolesnik, M., Livenskyi, A., Zgoda, V., Zubarev,V., Trofimova, A., Artamonova, D., Ispolatov, Y., Severinov, K. (2024)Interference requirements of type III CRISPR-Cas systems from thermusthermophilus. Journal of Molecular Biology, 436(6), 168448. DOI
- Demina, I.A., Serebryakova, M. V., Ladygina, V.G., Rogova, M.A., Zgoda,V.G., Korzhenevskyi, D.A., Govorun, V.M. (2009) Proteome of the bacteriummycoplasma gallisepticum. Biochemistry. Biokhimiia, 74(2), 165–174. DOI
- Vavilov, N.E., Zgoda, V.G., Tikhonova, O.V., Farafonova, T.E., Shushkova,N.A., Novikova, S.E., Yarygin, K.N., Radko, S.P., Ilgisonis, E.V., Ponomarenko,E.A., Lisitsa, A.V., Archakov, A.I. (2020) Proteomic analysis of Chr 18 proteinsusing 2D fractionation. Journal of Proteome Research, 19(12), 4901–4906. DOI
- Novikova, S., Tikhonova, O., Kurbatov, L., Farafonova, T., Vakhrushev,I., Lupatov, A., Yarygin, K., Zgoda, V. (2021) Omics technologies to decipherregulatory networks in granulocytic cell differentiation. Biomolecules, 11(6),907. DOI
- Shkrigunov, T., Kisrieva, Y., Samenkova, N., Larina, O., Zgoda, V., Rusanov,A., Romashin, D., Luzgina, N., Karuzina, I., Lisitsa, A., Petushkova, N. (2022)Comparative proteoinformatics revealed the essentials of SDS impact onHaCaT keratinocytes. Scientific Reports, 12(1), 21437. DOI
- Buneeva, O.A., Kapitsa, I.G., Kazieva, L.S., Vavilov, N.E., Zgoda, V.G.(2023) Quantitative changes of brain isatin-binding proteins of rats with therotenone-induced experimental parkinsonism. Biomeditsinskaya Khimiya,69(3), 188–192. DOI
- Medvedev, A., Kopylov, A., Buneeva, O., Kurbatov, L., Tikhonova, O.,Ivanov, A., Zgoda, V. (2020) A Neuroprotective dose of isatin causes multilevelchanges involving the brain proteome: prospects for further research.International Journal of Molecular Sciences, 21(11), 4187. DOI
- Anselm, V., Novikova, S., Zgoda, V. (2017) Re-adaption on earth afterspaceflights affects the mouse liver proteome. International Journal ofMolecular Sciences, 18(8), 1763. DOI
- Vavilov, N.E., Ilgisonis, E.V., Lisitsa, A.V., Ponomarenko, E.A., Farafonova,T.E., Tikhonova, O.V., Zgoda, V.G., Archakov, A.I. (2022) Deep proteomicdataset of human liver samples obtained by two-dimensional samplefractionation coupled with tandem mass spectrometry. Data in Brief, 42,108055. DOI
- Kurochkina, N.S., Orlova, M.A., Vigovskiy, M.A., Zgoda, V.G., Vepkhvadze,T.F., Vavilov, N.E., Makhnovskii, P.A., Grigorieva, O.A., Boroday, Y.R.,Philippov, V.V., Lednev, E.M., Efimenko, A. Y., Popov, D. V. (2024) Age-relatedchanges in human skeletal muscle transcriptome and proteome are moreaffected by chronic inflammation and physical inactivity than primary aging.Aging Cell, 23(4), e14098. DOI
- Davydov, D.R., Dangi, B., Yue, G., Ahire, D. S., Prasad, B., Zgoda, V.G.(2022) Exploring the interactome of cytochrome P450 2E1 in human livermicrosomes with chemical crosslinking mass spectrometry. Biomolecules,12(2), 185. DOI
- Novikova, S., Tolstova, T., Kurbatov, L., Farafonova, T., Tikhonova, O.,Soloveva, N., Rusanov, A., Archakov, A., Zgoda, V. (2022) Nuclear proteomicsof induced leukemia cell differentiation. Cells, 11(20), 3221. DOI
- Zgoda, V.G., Moshkovskii, S.A., Ponomarenko, E.A., Andreewski, T.V.,Kopylov, A.T., Tikhonova, O.V., Melnik, S.A., Lisitsa, A.V., Archakov, A.I. (2009)Proteomics of mouse liver microsomes: performance of different proteinseparation workflows for LC-MS/MS. Proteomics, 9(16), 4102–4105. DOI
- Kopylov, A.T., Ponomarenko, E.A., Ilgisonis, E.V., Pyatnitskiy, M.A., ,A.V., Poverennaya, E.V., Kiseleva, O.I., Farafonova, T.E., Tikhonova, O.V.,Zavialova, M.G., Novikova, S.E., Moshkovskii, S.A., Radko, S.P., Morukov, B.V.,Grigoriev, A.I., Paik, Y.K., Salekdeh, G.H., Urbani, A., Zgoda, V.G., Archakov,A.I. (2019) 200+ Protein concentrations in healthy human blood plasma:targeted quantitative SRM SIS screening of chromosomes 18, 13, Y, and themitochondrial chromosome encoded proteome. Journal of Proteome Research,18(1), 120–129. DOI
- Zgoda, V.G., Kopylov, A.T., Tikhonova, O.V., Moisa, A.A., Pyndyk,N.V., Farafonova, T.E., Novikova, S.E., Lisitsa, A.V., Ponomarenko, E.A.,Poverennaya, E.V., Radko, S.P., Khmeleva, S.A., Kurbatov, L.K., Filimonov,A.D., Bogolyubova, N.A., Ilgisonis, E.V., Chernobrovkin, A.L., Ivanov, A.S.,Medvedev, A.E., Mezentsev, Y.V., Archakov, A.I. (2013) Chromosome 18transcriptome profiling and targeted proteome mapping in depleted plasma, livertissue and HepG2 cells. Journal of Proteome Research, 12(1), 123–134. DOI
- Smirnova, L., Seregin, A., Boksha, I., Dmitrieva, E., Simutkin, G.,Kornetova, E., Savushkina, O., Letova, A., Bokhan, N., Ivanova, S., Zgoda, V.(2019) The difference in serum proteomes in schizophrenia and bipolar disorder.BMC Genomics, 20(Suppl 7), 535. DOI
- Pastushkova, L.H., Rusanov, V.B., Goncharova, A.G., Brzhozovskiy, A.G.,Kononikhin, A.S., Chernikova, A.G., Kashirina, D.N., Nosovsky, A.M., Baevsky,R.M., Nikolaev, E.N., Larina, I.M. (2019) Urine proteome changes associatedwith autonomic regulation of heart rate in cosmonauts. BMC Systems Biology,13(Suppl 1), 17. DOI
- Novikova, S., Soloveva, N., Farafonova, T., Tikhonova, O., Shimansky,V., Kugushev, I., Zgoda, V. (2023) Proteomic shotgun and targeted massspectrometric datasets of cerebrospinal fluid (liquor) derived from patients withvestibular schwannoma. Data, 8(4), 71. DOI
- Zavialova, M.G., Shevchenko, V.E., Nikolaev, E.N., Zgoda, V.G. (2017)Is myelin basic protein a potential biomarker of brain cancer? EuropeanJournal of Mass Spectrometry (Chichester, England), 23(4), 192–196. DOI
- Baskova, I.P., Zavalova, L.L., Basanova, A.V., Moshkovskii, S.A., Zgoda,V.G. (2004) Protein profiling of the medicinal leech salivary gland secretion byproteomic analytical methods. Biochemistry. Biokhimiia, 69(7), 770–775. DOI
- Kliuchnikova, A.A., Samokhina, N. ., Ilina, I.Y., Karpov, D.S., Pyatnitskiy,M.A., Kuznetsova, K.G., Toropygin, I.Y., Kochergin, S.A., Alekseev, I.B., Zgoda,V.G., Archakov, A.I., Moshkovskii, S.A. (2016) Human aqueous humor proteomein cataract, glaucoma, and pseudoexfoliation syndrome. Proteomics, 16(13),1938–1946. DOI
- Odorskaya, M.V., Mavletova, D.A., Nesterov, A.A., Tikhonova, O.V.,Soloveva, N.A., Reznikova, D.A., Galanova, O.O., Vatlin, A.A., Slynko,N.M., Vasilieva, A.R., Peltek, S.E., Danilenko, V.N. (2024) The use of omicstechnologies in creating LBP and postbiotics based on the limosilactobacillusfermentum U-21. Frontiers in Microbiology, 15, 1416688. DOI
- Pakharukova, M.Y., Savina, E., Ponomarev, D.V., Gubanova, N.V., Zaparina,O., Zakirova, E.G., Cheng, G., Tikhonova, O.V., Mordvinov, V.A. (2023)Proteomic characterization of opisthorchis felineus exosome-like vesicles andtheir uptake by human cholangiocytes. Journal of Proteomics, 283-284, 104927. DOI
- Gerringer, M.E., Yancey, P.H., Tikhonova, O.V., Vavilov, N.E., Zgoda, V.G.,Davydov, D.R. (2020) Pressure tolerance of deep-sea enzymes can be evolvedthrough increasing volume changes in protein transitions: a study with lactatedehydrogenases from abyssal and hadal fishes. The FEBS Journal, 287(24),5394–5410. DOI
- Fedulova, L., Vasilevskaya, E., Tikhonova, O., Kazieva, L., Tolmacheva,G., Makarenko, A. (2022) Proteomic markers in the muscles and brain ofpigs recovered from hemorrhagic stroke. Genes, 13(12), 2204. DOI
- Filatov, A.V., Krotov, G.I., Zgoda, V.G., Volkov, Y. (2007) Fluorescentimmunoprecipitation analysis of cell surface proteins: a methodologycompatible with mass-spectrometry. Journal of Immunological Methods, 319(1-2), 21–33. DOI
- Kopylov, A.T., Zgoda, V.G., Lisitsa, A.V., Archakov, A.I. (2013) Combineduse of irreversible binding and MRM technology for low- and ultralow copynumberprotein detection and quantitation. Proteomics, 13(5), 727–742. DOI
- Laptev, I., Shvetsova, E., Levitskii, S., Serebryakova, M., Rubtsova, M.,Zgoda, V., Bogdanov, A., Kamenski, P., Sergiev, P., Dontsova, O. (2020)METTL15 interacts with the assembly intermediate of murine mitochondrialsmall ribosomal subunit to form m4C840 12S rRNA residue. Nucleic AcidsResearch, 48(14), 8022–8034. DOI
- Ludwig, K. R., Schroll, M. M., Hummon, A. B. (2018). Comparison of In-Solution, FASP, and S-Trap Based Digestion Methods for Bottom-Up ProteomicStudies. Journal of proteome research, 17(7), 2480–2490. DOI
- Wiśniewski, J. R., Ostasiewicz, P., Mann, M. (2011). High recovery FASPapplied to the proteomic analysis of microdissected formalin fixed paraffinembedded cancer tissues retrieves known colon cancer markers. Journal ofproteome research, 10(7), 3040–3049. DOI
- Wiśniewski, J.R., Zielinska, D.F., Mann, M. (2011) Comparison ofultrafiltration units for proteomic and N-glycoproteomic analysis by the filteraidedsample preparation method. Analytical Biochemistry, 410(2), 307–309. DOI