К 40-летию Института физиологически активных веществ РАН

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

РАСЧЁТ И АНАЛИЗ ФРАКТАЛЬНЫХ ДЕСКРИПТОРОВ ДЛЯ БЕЛКОВЫХ АМИНОКИСЛОТ В РАЗЛИЧНЫХ КОНФОРМАЦИОННЫХ СОСТОЯНИЯХ

В.Ю. Григорьев¹*, Л.Д. Григорьева²

¹Институт физиологически активных веществ Российской академии наук, 142432, Черноголовка Московской обл., Северный проезд, 1; *эл. почта: beng@ipac.ac.ru ²Факультет фундаментальной физико-химической инженерии МГУ имени М.В. Ломоносова, 119991, Москва, ГСП-1, Ленинские горы, д. 1, стр. 51

Изучен ряд из 20 белковых аминокислот. Рассчитаны 4 типа фрактальных дескрипторов для 2-х конформационных состояний: α-спираль и одноцепочечная альфа-структура. На основе анализа полученных результатов установлено, что при изменении конформационного состояния аминокислот (α-спираль—β-структура) значимых изменений во фрактальном дескрипторе D_{tot}, при расчёте которого используются все атомы молекулы, не наблюдается. Однако, более специфические дескрипторы D_{val}, D_{vdw} и D_{unb}, которые отражают совокупность валентно связанных, находящихся в ван-дер-ваальсовом контакте и несвязанных атомов соответственно, оказываются более чувствительными к конформационному переходу. Для ряда из 7 аминокислот установлен рост величин D_{val}, D_{vdw} и падение величины D_{unb}.

Ключевые слова: аминокислоты; фрактальные дескрипторы; α-спираль; β-структура

DOI: 10.18097/BMCRM00070

введение

Одним из ключевых вопросов в молекулярной биологии является выявление связи межлу физиологической ролью белков и их первичной структурой. Хорошо известно, что функции белков и их пространственная структура в значительной степени определяются последовательностью аминокислотных остатков [1, 2]. В качестве одного из подходов для выявления и анализа таких зависимостей используются методы нелинейной динамики и фрактальной геометрии [3-6]. В таких работах объектами изучения обычно являются полимерные молекулы (пептиды И белки). При этом достаточно широкое распространение получили исследования структуры белков, связанные с расчётом фрактальных размерностей [7-10]. Однако анализу мономеров белковых молекул уделяется мало внимания. В частности, отсутствуют данные о влиянии изменения конформации аминокислот на их фрактальные характеристики. Ранее было предложено применять для описания структуры соединений гистограммы межатомных расстояний (ГМА) и использовать их для расчёта фрактальных размерностей (дескрипторов) [11]. Эти дескрипторы весьма чувствительны и отражают тонкие количественно изменения в пространственной структуре молекул.

Целью настоящей работы является расчёт и анализ фрактальных дескрипторов для 20 белковых аминокислот в двух конформационных состояниях: α-спираль и одноцепочечная β-структура.

МАТЕРИАЛЫ И МЕТОДЫ

В качестве объектов исследования использовали 20 белковых аминокислот. Трёхмерную структуру

молекул рассчитывали на основе базы данных аминокислот ИЗ компьютерной программы HyperChem [12]. Для анализа использовали 2 конформации: α-спираль (L; φ=-58°; ψ=-47°; ω=180°) и одноцепочечную β -структуру (L; ϕ =180°; ψ =180°; ω=180°). Для расчёта фрактальных дескрипторов применяли гистограммы межатомных расстояний с разрешением 0.01 Å (рис. 1). По своему физическому содержанию фрактальный дескриптор представляет собой фрактальную размерность, рассчитанную для определённой группы межатомных расстояний с использованием известного клеточного алгоритма [13]. В ГМА использовали четыре части: 1) все атомы; 2) область валентно связанных атомов; 3) область атомов, находящихся в ван-дер-ваальсовом контакте; 4) область несвязанных атомов. В результате было рассчитано 4 типа дескрипторов: D_{tot} , D_{val} , D_{vdw} и D_{unb} соответственно (табл. 1, 2).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Фрактальная размерность является количественной мерой "изрезанности" ГМА и, теоретически, для плоской кривой может меняться от 1 до 2. Интервал изменения фрактальных дескрипторов в случае α -спирали составлял 1.17÷1.45, 1.01÷1.33, 1.11÷1.45, 1.09÷1.41 для D_{tot} , D_{val} , D_{vdw} , D_{unb} соответственно. Для β -структуры эти величины были равны 1.21÷1.45, 1.01÷1.28, 1.11÷1.53 и 1.00÷1.42.

Как следует из представленных данных, интервалы изменения дескрипторов в двух разных конформациях довольно близки и, в целом, можно ожидать близости их значений для отдельных молекул аминокислот. И, действительно, в большинстве случаев величины фрактальных дескрипторов мало отличаются друг от друга. Однако имеются и различия для ряда аминокислот (рис. 2). Это проявляется

© © © 2018 Коллектив авторов. Лицензиат ИБМХ, Москва. Статья открытого доступа, распространяется на условиях лицензии Creative Commons Attribution (СС BY-SA 4.0) (http://creativecommons.org/licenses/by-sa/4.0/).

No	A	α-спираль								
JNG	Аминокислота	$D_{tot}(\pm\Delta)$	$D_{val}(\pm\Delta)$	$D_{vdw}(\pm\Delta)$	$D_{unb}(\pm\Delta)$					
1	Ala	1.17(±0.03)	1.05(±0.02)	1.14(±0.02)	1.23(±0.03)					
2	Arg	1.28(±0.02)	1.13(±0.06)	1.30(±0.02)	1.31(±0.03)					
3	Asn	1.29(±0.02)	1.10(±0.03)	1.30(±0.03)	1.30(±0.05)					
4	Asp	1.21(±0.02)	1.18(±0.04)	1.20(±0.02)	1.18(±0.03)					
5	Cys	1.24(±0.02)	1.01(±0.01)	1.23(±0.03)	1.27(±0.04)					
6	Gln	1.27(±0.03)	1.14(±0.05)	1.29(±0.02)	1.28(±0.04)					
7	Glu	1.22(±0.02)	1.19(±0.04)	1.24(±0.02)	1.18(±0.02)					
8	Gly	1.17(±0.02)	1.08(±0.03)	1.30(±0.05)	1.09(±0.05)					
9	His	1.37(±0.03)	1.28(±0.06)	1.34(±0.02)	1.35(±0.03)					
10	Ile	1.21(±0.02)	1.07(±0.02)	1.13(±0.01)	1.26(±0.03)					
11	Leu	1.20(±0.01)	1.07(±0.02)	1.11(±0.01)	1.23(±0.01)					
12	Lys	1.24(±0.02)	1.17(±0.05)	1.14(±0.02)	1.26(±0.02)					
13	Met	1.27(±0.02)	1.02(±0.01)	1.33(±0.02)	1.27(±0.02)					
14	Phe	1.27(±0.02)	1.13(±0.04)	1.26(±0.02)	1.26(±0.02)					
15	Pro	1.24(±0.01)	1.13(±0.02)	1.32(±0.01)	1.23(±0.03)					
16	Ser	1.20(±0.02)	1.12(±0.03)	1.22(±0.02)	1.18(±0.02)					
17	Thr	1.24(±0.02)	1.12(±0.02)	1.25(±0.02)	1.21(±0.02)					
18	Trp	1.45(±0.03)	1.33(±0.05)	1.45(±0.03)	1.41(±0.04)					
19	Tyr	1.24(±0.02)	1.10(±0.02)	1.24(±0.02)	1.23(±0.03)					
20	Val	1.22(±0.02)	1.12(±0.04)	1.15(±0.01)	1.23(±0.02)					

1	Таблица	1. Фрактальные	дескрипторы (D _{to}	, D _{val}	D_{vdw}, D_{v}	и стандартные	ошибки Δ) аминокислот (α-спираль)
---	---------	----------------	------------------------------	--------------------	------------------	---------------	-----------------	-----------------	------------

Таблица 2	. Фрактальные	е дескрипторы (I	D _{tot} , I) _{val} ,	D _{vdw} ,	D _{unb} 1	и стандартные с	эшибки Δ)	аминокислот	(β-стру	стура)
-----------	---------------	------------------	----------------------	--------------------	--------------------	--------------------	-----------------	-----------	-------------	---------	--------

No	A 1	β-структура									
JN⊡	Аминокислота	$D_{tot}(\pm\Delta)$	$D_{val}(\pm\Delta)$	$D_{vdw}(\pm\Delta)$	$D_{unb}(\pm\Delta)$						
1	Ala	1.21(±0.02)	1.16(±0.05)	1.23(±0.03)	1.12(±0.01)						
2	Arg	1.27(±0.02)	1.15(±0.06)	1.30(±0.02)	1.29(±0.03)						
3	Asn	1.25(±0.02)	1.10(±0.03)	1.31(±0.03)	1.21(±0.03)						
4	Asp	1.22(±0.02)	1.18(±0.04)	1.22(±0.03)	1.15(±0.03)						
5	Cys	1.23(±0.01)	1.01(±0.01)	1.25(±0.03)	1.25(±0.03)						
6	Gln	1.27(±0.02)	1.14(±0.05)	1.28(±0.02)	1.29(±0.04)						
7	Glu	1.21(±0.02)	1.23(±0.04)	1.24(±0.02)	1.16(±0.02)						
8	Gly	1.20(±0.04)	1.08(±0.03)	1.31(±0.06)	1.00(±0.01)						
9	His	1.36(±0.03)	1.22(±0.06)	1.38(±0.02)	1.36(±0.03)						
10	Ile	1.22(±0.02)	1.13(±0.05)	1.14(±0.02)	1.25(±0.02)						
11	Leu	1.21(±0.02)	1.07(±0.02)	1.11(±0.01)	1.23(±0.01)						
12	Lys	1.23(±0.02)	1.23(±0.06)	1.14(±0.02)	1.24(±0.02)						
13	Met	1.24(±0.01)	1.02(±0.01)	1.34(±0.02)	1.25(±0.02)						
14	Phe	1.26(±0.03)	1.19(±0.05)	1.25(±0.02)	1.23(±0.02)						
15	Pro	1.24(±0.01)	1.13(±0.02)	1.32(±0.02)	1.17(±0.01)						
16	Ser	1.20(±0.02)	1.16(±0.03)	1.27(±0.03)	1.14(±0.01)						
17	Thr	1.25(±0.03)	1.09(±0.02)	1.28(±0.02)	1.22(±0.03)						
18	Trp	1.45(±0.03)	1.28(±0.03)	1.53(±0.03)	1.42(±0.04)						
19	Tyr	1.23(±0.02)	1.10(±0.02)	1.25(±0.02)	1.21(±0.02)						
20	Val	1.24(±0.02)	1.16(±0.06)	1.15(±0.01)	1.23(±0.02)						

Рисунок 1. Гистограмма межатомных расстояний для аланина.

Рисунок 2. Изменение фрактальных дескрипторов аминокислот в зависимости от конформации.

в том, что интервалы варьирования фрактальных дескрипторов не перекрываются в различных конформационных состояниях.

При этом можно отметить, что эти изменения связаны только с тремя дескрипторами: D_{val}, D_{vdw}, D_{unb}. Фрактальный дескриптор D_{tot}, который рассчитывается с учётом всех атомов в молекуле, оказывается нечувствительным к конформационным изменениям. Величины D для молекул меняются, и направление зависит от типа дескриптора. В случае D_{val} и D_{vdw} при переходе от α-спирали к β-структуре наблюдается рост, а для D_{unb} падение соответствующих величин. Особенно примечательной оказывается молекула аланина, в которой наблюдаются значимые изменения для всех трёх фрактальных дескрипторов. Учитывая проведенное ранее нами исследование [14], сдвиги величин D можно связать или с изменением числа атомов, которые используются при расчёте, или с изменением точечной группы симметрии молекул при конформационном переходе. Примечательно, что обнаруженный нами ряд из 7 аминокислот (аланин, аспарагин, глицин, гистидин, пролин, серин, триптофан) с заметными изменениями фрактальных дескрипторов практически полностью (за исключением гистидина) попадает в область гидрофобных аминокислот по классификации, использованной в работе [15].

ЗАКЛЮЧЕНИЕ

Таким образом, анализ полученных результатов свидетельствует о TOM, что при изменении конформационного состояния аминокислот $(\alpha$ -спираль $\rightarrow \beta$ -структура) значимых изменений фрактальном дескрипторе D_{tot}, при расчёте BO которого используются все атомы молекулы, не наблюдается. Однако, более специфические дескрипторы D_{val}, D_{vdw} и D_{unb}, которые отражают совокупность валентно связанных, находящихся в ван-дер-ваальсовом контакте и несвязанных атомов соответственно, оказываются более чувствительными к конформационному переходу. Для ряда из семи аминокислот (аланин, аспарагин, глицин, гистидин, пролин, серин, триптофан) установлен рост величин D_{val}, D_{vdw} и падение величины D_{unb}.

БЛАГОДАРНОСТИ

Работа выполнена в рамках государственного задания на 2018 год (тема № 0090-2017-0020).

ЛИТЕРАТУРА

1. Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science, 181(4096), 223-230. DOI: 10.1126/science.181.4096.223

2. Sweet, R.M., & Eisenberg, D. (1983) Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure. J. Mol. Biol., 171(4), 479-488. DOI: 10.1016/0022-2836(83)90041-4

3. Giuliani, A., Benigni, R., Zbilut, J.P., Webber, Jr., C.L., Sirabella, P., & Colosimo, A. (2002) Nonlinear signal analysis methods in the elucidation of protein sequence-structure relationships. Chem. Rev., 102(5), 1471-1492. DOI: 10.1021/cr0101499

4. Huang, Y., Xiao, Y. (2003) Nonlinear deterministic structures and the randomness of protein sequences. Chaos, Solitons and Fractals, 17, 895-900. DOI: 10.1016/S0960-0779(02)00571-4

5. Kanduc, D., Capone, G., Delfino, V.P., & Losa, G. (2010) The fractal dimension of protein information. Advanced Studies in Biology, 2(2), 53-62.

6. Kornev, A.P., Taylor, S.S. (2017) Fractal nature of protein interior and its implications for protein function. Biophys. J., 112(3), 194A-195A. DOI: 10.1016/j.bpj.2016.11.1079

7. Pavan, Y.S., Mitra, C.K. (2005) Fractal studies on the protein secondary structure elements. Ind. J. Biochem. Biophys., 42, 141-144.

8. Yu, Z.G., Anh, V., & Lau, K.S. (2003) Multifractal and correlation analyses of protein sequences from complete genomes. Phys. Rev. E, 68, 021913. DOI: 10.1103/PhysRevE.68.021913

9. Todoroff, N., Kunze, J., Schreuder, H., Hessler, G., Baringhaus, K.H., & Schneider, G. (2014) Fractal dimensions of macromolecular structures. Mol. Inf., 33, 588-596. DOI: 10.1002/minf.201400090

10. Andoyo, R., Lestari, V.D., Mardawati, E., & Nurhadi, B. (2018) Fractal dimension analysis of texture formation of whey protein-based foods. Int. J. Food Sci., 2018, article ID 7673259, 17 pages. DOI: 10.1155/2018/7673259

11. Grigor'ev, V.A., Raevskii, O.A. (2011) Fractal dimension of the interatomic distance histogram: new 3D descriptor of molecular structure. Russ. J. Gen. Chem., 81(3), 449-455. DOI: 10.1134/S1070363211030017

12. HyperChem. Retrieved August 28, 2018, from http://www.hyper.com/

13. Crownover, R.M. (1995) Introduction in fractals and chaos, Boston, Jones and Bartlett, 306.

14. Grigorev, V.Yu., Grigoreva, L.D. (2016) Calculation and properties of fractal descriptors for C_2 – C_9 alkanes. Moscow Univ. Chem. Bull., 71(3), 199-204. DOI: 10.3103/S0027131416030056

15. Pande, V.S., Grosberg, A.Y., & Tanaka, T. (1994) Nonrandomness in protein sequences: evidence for a physically driven stage of evolution? Proc. Natl. Acad. Sci. USA, 91(26), 12972-12975.

> Поступила: 24. 08. 2018. Принята к публикации: 07. 09. 2018.

CALCULATION AND ANALYSIS OF FRACTAL DESCRIPTORS FOR PROTEIN AMINO ACIDS IN VARIOUS CONFORMATIONAL STATES

V.Yu. Grigorev¹*, L.D. Grigoreva²

Institute of Physiologically Active Compounds of the Russian Academy of Sciences,

1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia; *e-mail: beng@ipac.ac.ru

²Department of Fundamental Physical and Chemical Engineering, Moscow State University, Moscow, 119991 Russia

A series of 20 proteinogenic amino acids was studied. Four types of fractal descriptors for 2 conformational states are calculated: α -helix and 1-strand β -sheet. Based on the analysis of the results obtained, it is established that when the conformational state of the amino acids (α -helix $\rightarrow\beta$ -sheet) changes, significant changes in the fractal descriptor D_{tot} , in the calculation of which all the atoms of the molecule are used, are not observed. However, the more specific descriptors D_{val} , D_{vdw} and D_{unb} , which reflect the aggregate of valence-coupled, van der Waals contact and unbound atoms, respectively, are more sensitive to the conformational transition. The increase D_{val} , D_{vdw} and the decrease D_{unb} values were established for a series of 7 amino acids.

Key words: amino acids; fractal descriptors; α-helix; β-sheet

ACKNOWLEDGMENTS

The work was performed within the framework of the State Task for 2018 (topic number 0090-2017-0020).