Sensitivity of Extracellular Vesicles from Human Blood Serum to Various Detergents

Main Article Content

A.A. Yakovlev
T.A. Druzhkova
A.B. Guekht
N.V. Gulyaeva

Abstract

Blood exosomes and microvesicles, collectively known as small extracellular vesicles (sEV), are vesicles about 100-150 nm in size. Small EV are involved in various aspects of signaling in the body; in addition, they can serve as markers of various pathologies. For biochemical studies, vesicle solubilization is often required. We tested the ability of various detergents to dissolve membranes of the sEV. Small EV were isolated from the blood serum of healthy volunteers by gel filtration on Sepharose CL-2B and tried to solubilize them using the anionic detergent DOC (sodium deoxycholate), non-ionic detergent Brij 35 (polyoxyethyleneglycol dodecyl ether), zwitterionic detergent CHAPS (3 - [(3-chloramidopropyl) dimethylammonio] -1-propanesulfonate), and cationic detergent CTAB (cetyl trimethylammonium bromide). The concentration of sEV in the solution was determined by dynamic light scattering. We find DOC is the most effective for sEV solubilization.

Article Details

How to Cite
Yakovlev, A., Druzhkova, T., Guekht, A., & Gulyaeva, N. (2020). Sensitivity of Extracellular Vesicles from Human Blood Serum to Various Detergents. Biomedical Chemistry: Research and Methods, 3(4), e00143. https://doi.org/10.18097/BMCRM00143
Section
EXPERIMENTAL RESEARCH

References

  1. Bavisotto, C. C., Scalia, F., Gammazza, A. M., Carlisi, D., Bucchieri, F., de Macario, E. C., Macario, A. J. L., Cappello, F., Campanella, C. (2019) Extracellular Vesicle-Mediated Cell-Cell Communication in the Nervous System: Focus on Neurological Diseases. Int. J. Mol. Sci., 20(2), Article 434. DOI
  2. Raposo, G., Stoorvogel, W. (2013) Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol., 200(4), 373-383. DOI
  3. Diaz, G., Wolfe, L. M., Kruh-Garcia, N. A., Dobos, K. M. (2016) Changes in the Membrane-Associated Proteins of Exosomes Released from Human Macrophages after Mycobacterium tuberculosis Infection. Sci. Rep., 6, Article 37975. DOI
  4. Castillo, J., Bernard, V., San Lucas, F. A., Allenson, K., Capello, M., Kim, D. U., Gascoyne, P., Mulu, F. C., Stephens, B. M., Huang, J., Wang, H., Momin, A. A., Jacamo, R. O., Katz, M., Wolff, R., Javle, M., Varadhachary, G., Wistuba, II, Hanash, S., Maitra, A., Alvarez, H. (2018) Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann. Oncol., 29(1), 223-229. DOI
  5. Osteikoetxea, X., Sodar, B., Nemeth, A., Szabo-Taylor, K., Paloczi, K., Vukman, K. V., Tamasi, V., Balogh, A., Kittel, A., Pallinger, E., Buzas, E. I. (2015) Differential detergent sensitivity of extracellular vesicle subpopulations. Organic & Biomolecular Chemistry, 13(38), 9775-9782. DOI
  6. Martelli, F., Macera, L., Spezia, P. G., Medici, C., Pistello, M., Guasti, D., Romagnoli, P., Maggi, F., Giannecchini, S. (2018) Torquetenovirus detection in exosomes enriched vesicles circulating in human plasma samples. Virology Journal, 15, Article 145. DOI
  7. Kumeda, N., Ogawa, Y., Akimoto, Y., Kawakami, H., Tsujimoto, M., Yanoshita, R. (2017) Characterization of Membrane Integrity and Morphological Stability of Human Salivary Exosomes. Biol. Pharm. Bull., 40(8), 1183-1191. DOI
  8. Midekessa, G., Godakumara, K., Ord, J., Viil, J., Lattekivi, F., Dissanayake, K., Kopanchuk, S., Rinken, A., Andronowska, A., Bhattacharjee, S., Rinken, T., Fazeli, A. (2020) Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability. Acs Omega, 5(27), 16701-16710. DOI
  9. Cunnane, E. M., Lorentz, K. L., Ramaswamy, A. K., Gupta, P., Mandal, B. B., O'Brien, F. J., Weinbaum, J. S., Vorp, D. A. (2020). Extracellular Vesicles Enhance the Remodeling of Cell-Free Silk Vascular Scaffolds in Rat Aortae. Acs Applied Materials & Interfaces, 12(24), 26955-26965. DOI
  10. Tian, Y., Gong, M. F., Hu, Y. Y., Liu, H. S., Zhang, W. Q., Zhang, M. M., Hu, X. X., Aubert, D., Zhu, S. B., Wu, L., Yan, X. M. (2020) Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. J. Extracell. Vesicles, 9(1), Article 1697028. DOI
  11. Subedi, P., Schneider, M., Philipp, J., Azimzadeh, O., Metzger, F., Moertl, S., Atkinson, M. J., Tapio, S. (2019) Comparison of methods to isolate proteins from extracellular vesicles for mass spectrometry-based proteomic analyses. Anal. Biochem., 584, Article 113390. DOI
  12. Witwer, K. W., Buzás, E. I., Bemis, L. T., Bora, A., Lässer, C., Lötvall, J., Nolte-‘t Hoen, E. N., Piper, M. G., Sivaraman, S., Skog, J., Théry, C., Wauben, M. H., Hochberg, F. (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles, 2(1), 20360. DOI
  13. Gamez-Valero, A., Monguio-Tortajada, M., Carreras-Planella, L., Marcel-la, F., Beyer, K., Borras, F. E. (2016) Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents. Sci. Rep., 6, Article 33641. DOI
  14. Yakovlev, A. A., Druzhkova, T. A., Nikolaev, R. V., Kuznetsova, V. E., Gruzdev, S. K., Guekht, A. B., Gulyaeva, N. V. (2019) Elevated Levels of Serum Exosomes in Patients with Major Depressive Disorder. Neurochemical Journal, 13(4), 385-390. DOI