Identification of Ribosomal Footprints on the Electrophoretic Gel in Translatome Profiling: on the Use of DNA Size Standards

Main Article Content

S.A. Khmeleva
L.K. Kurbatov
K.G. Ptitsyn
S.P. Radko
I.V. Vakhrushev
A.V. Lisitsa
E.A. Ponomarenko

Abstract

The commercial DNA ladder was tested as a substitute for RNA size standards to identify ribosomal footprints (RNA fragments of about 30 nucleotides long) on an electrophoretic polyacrylamide gel for the purposes of translatome profiling. It has been found that 25 and 35 nucleotides long synthetic RNA oligonucleotides do migrate slower than the synthetic DNA oligonucleotides of the matching length and sequences and their positions on the gel coincide with those of 30 and 40 nucleotides long DNA oligonucleotides, correspondingly, of the commercial IDT 20/100 DNA oligo length standards. By using this DNA ladder and RNA isolated from the preparation enriched in ribosomes (obtained by fractionating on MicroSpin S-400 columns the HepG2 cell lysate treated with RNase I), the position of a band of putative ribosomal footprints can be identified on a gel that has been verified by measuring in an RNA-seq experiment the length of RNA fragments extracted from the band.

Article Details

How to Cite
Khmeleva, S., Kurbatov, L., Ptitsyn, K., Radko, S., Vakhrushev, I., Lisitsa, A., & Ponomarenko, E. (2023). Identification of Ribosomal Footprints on the Electrophoretic Gel in Translatome Profiling: on the Use of DNA Size Standards. Biomedical Chemistry: Research and Methods, 6(3), e00195. https://doi.org/10.18097/BMCRM00195
Section
EXPERIMENTAL RESEARCH

References

  1. Ingolia N.T., Ghaemmaghami S., Newman J.R., Weissman J.S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324(5924), 218-223. DOI
  2. Wang Y., Zhang H., Lu J. (2020) Recent advances in ribosome profiling for deciphering translational regulation. Methods, 176, 46-54. DOI
  3. McGlincy N.J., Ingolia N.T. (2017) Transcriptome-wide measurement of translation by ribosome profiling. Methods, 126, 112-129. DOI
  4. Chen H., Meisburger S.P., Pabit S.A., Sutton J.L., Webb W.W., Pollack L. (2012) Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. The Proceedings of the National Academy of Sciences of the U S A, 109(3), 799-804. DOI
  5. Bao L., Zhang X., Jin L., Tan Z.J. (2016) Flexibility of nucleic acids: From DNA to RNA. Chinese Physics B, 25, 018703. DOI
  6. Deinichenko K.A., Krasnov G.S., Radko S.P., Ptitsyn K.G., Shapovalova V.V., Timoshenko O.S., Khmeleva S.A., Kurbatov L.K., Kiseleva Y.Y., Ilgisonis E.V., Pyatnitskiy M.A., Poverennaya E.V., Kiseleva O.I., Vakhrushev I.V., Tsvetkova A.V., Buromski I.V., Markin S.S., Zgoda V.G., Archakov A.I., Lisitsa A.V., Ponomarenko E.A. (2021) Human CHR18: “Stakhanovite” Genes, Missing and uPE1 Proteins in Liver Tissue and HepG2 Cells. Biomedical Chemistry: Research and Methods, 4(1), e00144. DOI
  7. Wang H., Wang Y., Yang J., Zhao Q., Tang N., Chen C., Li H., Cheng C., Xie M., Yang Y., Xie Z. (2021) Tissue- and stage-specific landscape of the mouse translatome. Nucleic Acids Research, 49(11), 6165-6180. DOI
  8. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10, R25. DOI