β1-Adrenergic Receptor Solubilized in the Form of Nanodiscs: Screening of Various Amphipatic Polymers

Main Article Content

M.M. Peclo
L.N. Lipatova
N.M. Kashirina
T.V. Sharf
I.B. Kuznetzova
E.E. Efremov
E.V. Yanushevskaya
P.N. Rutkevich
I.N. Rybalkin
T.N. Vlasik


The development of a reliable and easily used diagnostic test for measuring autoantibodies to β1-adrenergic receptor (β1ADR Ab) in patient blood is an unmet clinical need. The enzyme-linked immunosorbent assay (ELISA) is considered as the most appropriate method for this task. In ELISA, the use of peptides corresponding to various fragments of amino acid sequence of β1ADR as antigens leads to inadequate results as β1ADR Ab appear to recognize conformationally dependent epitopes that are generated during the formation of unique tertiary structure of the receptor. Isolation of β1ADR preserving the native conformation and functional characteristics is a quite challenging task. A promising approach to address this task is the use of amphipatic polymers capable of forming nanodiscs, it permits to successfully solubilize membrane proteins. In order to obtain the preparations of solubilized β1ADR that can be used as antigens in ELISA we have tested 17 various amphipatic polymers. The best relative solubilization values (RSV) were obtained using UltrasoluteTM Amphipol 17 (87%) and 18 (62%), as well as by AASTY 11-45 (76%), 11-50 (77%) and 6-50 (78.5%).

Article Details

How to Cite
Peclo, M., Lipatova, L., Kashirina, N., Sharf, T., Kuznetzova, I., Efremov, E., Yanushevskaya, E., Rutkevich, P., Rybalkin, I., & Vlasik, T. (2023). β1-Adrenergic Receptor Solubilized in the Form of Nanodiscs: Screening of Various Amphipatic Polymers. Biomedical Chemistry: Research and Methods, 6(4), e00206. https://doi.org/10.18097/BMCRM00206


  1. Sterin-Borda, L., Cossio, P.M., Gimeno, M.F., Gimeno, A.L., Diez, C., Laguens, R.P. , Meckert, P.C., Arana, R.M.( 1976) Effect of chagasic sera on the rat isolated atrial preparation: immunological, morphological and function aspects. Cardiovasc. Res., 10(6), 613–622. DOI
  2. Magnusson, Y., Wallukat, G., Waagstein, F., Hjalmarson, A., Hoebeke, J. (1994) Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the beta1-adrenoceptor with positive chronotropic effect. Circulation, 89(6), 2760–2767. DOI
  3. Jahns, R., Boivin, V., Siegmund, C., Inselmann, G., Lohse, M.J., Boege, F. (1999) Autoantibodies activating human beta1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation, 99(5), 649–654. DOI
  4. Liu, J., Wang, Y., Chen, M., Zhao, W., Wang, X., Wang, H., Zhang, Z., Zhang, J., Xu, L., Chen, J., Yang, X., Zhang, L. (2014) The correlation between peripartum cardiomyopathy and autoantibodies against cardiovascular receptors. PLoS One, 9(1), e86770. DOI
  5. Magnusson, Y., Marullo, S., Hoyer, S., Waagstein, F., Andersson, B., Vahlne, A., Guillet, J.G., Strosberg, A.D., Hjalmarson, A., Hoebeke, J. (1990) Mapping of a functional autoimmune epitope on the beta1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J. Clin. Inves.t, 86(5), 1658–1663. DOI
  6. Wallukat, G., Wollenberger, A., Morwinski, R., Pitschner, H.F. (1995) Anti-beta1- adrenoceptor autoantibodies with chronotropic activity from the serum of patients with dilated cardiomyopathy: mapping of epitopes in the first and second extracellular loops. J. Mol. Cell Cardiol., 27(1), 397–406. DOI
  7. Peclo, M.M., Lipatova, L.N., Gerasimova, E.I. (2020) Autoantibodies to β1-adrenergic receptor: pathogenetic role, mechanisms of action and methods of determination. Kardiol. Vestnik, 3, 20-25. DOI
  8. Felix, S.B., Staudt, A., Landsberger, M., Grosse, Y., Stangl, V., Spielhagen, T., Wallukat, G., Wernecke, K.D., Baumann, G., Stangl, K. (2002) Removal of cardiodepressant antibodies in dilated cardiomyopathy by immunoadsorption. J. Am. Coll. Cardiol., 39(4), 646–652. DOI
  9. Ronspeck, W., Brinckmann, R., Egner, R., Gebauer, F., Winkler, D., Jekow, P., Wallukat, G., Müller, J., Kunze, R. (2003) Peptide based adsorbers for therapeutic immunoadsorption. Ther Apher. Dial., 7(1), 91–97. DOI
  10. Wallukat, G., Muller, J., Hetzer, R. (2002) Specific removal of beta1-adrenergic autoantibodies from patients with idiopathic dilated cardiomyopathy. N. Engl. J. Med., 347(22), 1806-1806. DOI
  11. Störk, S., Boivin, V., Horf, R., Hein, L., Lohse, M.J., Angermann, C.E., Jahns, R. (2006) Stimulating autoantibodies directed against the cardiac ß1-adrenergic receptor predict increased mortality in idiopathic cardiomyopathy. Am. Heart J, 152(4), 697–704. DOI
  12. Iwata, M., Yoshikawa, T., Baba, A., Anzai, T., Mitamura, H., Ogawa, S. (2001) Autoantibodies against the second extracellular loop of beta(1)-adrenergic receptors predict ventricular tachycardia and sudden death in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol, 37(2), 418–424. DOI
  13. Pei, J., Li, N., Chen, J., Li, X., Zhang, Y., Wang, Z., Zhang, P., Cao, K., Pu, J. (2012) The predictive values of beta1-adrenergic and M2 muscarinic receptor autoantibodies for sudden cardiac death in patients with chronic heart failure. Eur. J. Heart Fail, 14(8), 887–894. DOI
  14. Wenzel, K., Schulze-Rothe, S., Haberland, A., Müller, J., Wallukat, G., Davideit, H. (2017) Performance and in-house validation of a bioassay for the determination of beta1- autoantibodies found in patients with cardiomyopathy. Heliyon, 3 (7), e00362. DOI
  15. Gupalo, E.M., Stukalova, O.V., Rogova, M.M., Mironova, N.A., Malkina, T.A., Sharf, T.V., Efremov, E.E., Gerasimova, V.V., Bakalov, S.A., Ternovoy, S.R., Golitsyn, S.P. (2014) Relationship of focal fibrosis according to magnetic resonance tomography, autoantibodies to cardiac membrane receptors and ventricular arrhythmias in patients with dilated cardiomyopathy. Kardiologya (12), 29-36.
  16. Matsui, S., Fu, M.L., Shimizu, M., Fukuoka, T., Teraoka, K., Takekoshi, N., Murakami, E., Hjalmarson, A. (1995) Dilated cardiomyopathy defines serum autoantibodies against G-protein coupled cardiovascular receptors. Autoimmunity; 21(2), 85–88. DOI
  17. Bornholz, B., Benninghaus, T., Reinke, Y., Felix, S.B., Roggenbuck, D., Jahns-Boivin, V., Jahns, R., Boege, F. (2015) A standardised FACS assay based on native, receptor transfected cells for the clinical diagnosis and monitoring of β1-adrenergic receptor autoantibodies in human heart disease. Clin. Chem. Lab. Med., 54(4), 1-9. DOI
  18. Bornholz, B., Hanzen, B.,Reinke, Y., Felix, S.B., Jahns, R., Schimke, I., Wallukat, G., Boege, F. (2016) Detection of DCM-associated β1-adrenergic receptor autoantibodies requires functional readouts or native human β1-receptors as targets. Int. J. Cardiol; 202, 728–730. DOI
  19. Krishnarjuna, B., Ramamoorthy A. (2022) Detergent-free isolation of membrane proteins and strategies to study them in a near-native membrane environment. Biomolecules, 12(8), 1076. DOI
  20. Sligar, S.G., Denisov, I.G. (2021) Nanodiscs: a toolkit for membrane protein science. Protein Sci., 30(2), 297–315. DOI
  21. Orekhov, P.S., Bozdaganyan, M.E., Voskoboynikova, N., Mulkidjanian, A.Y., Karlova, M.G., Yudenko, A., Remeeva, A., Ryzhykau, Y.L., Gushchin, I., Gordeliy, V.I., Sokolova, O.S., Steinhoff, H.J, Kirpichnikov, M.P., Shaitan K.V. (2022) Mechanisms of formation, structure, and dynamics of lipoprotein discs stabilized by amphiphilic copolymers: a comprehensive review. Nanomaterials, 12(3), 361. DOI
  22. Rues, R.B., Dötsch, V., Bernhard, F. (2016) Co-translational formation and pharmacological characterization of beta1-adrenergic receptor/nanodisc complexes with different lipid environments. Biochim. Biophys. Acta. 1858(6), 1306-1316. DOI
  23. Shevelev, A.Y., Kashirina, N.M., Kuznetsova, T.B., Sharf, T.V., Mamochkina, E.N., Agapova, O.Y., Gurskaya, T.K., Lipatova, L.N., Peklo, M.M., Rutkevich, P.N., Yanushevskaya, E.V., Rybalkin, I.N., Skoblov, Y.S., Efremov, E.E., Vlasik, T.N., Zykov, K.A. (2015) Cell line expressing recombinant β1-adrenergic receptor for the agonistic autoantibodies detection by a competitive enzyme-linked immunosorbent assay. Vestnik Biotechnol., 11(4), 5–14.
  24. Afanas’eva, O.I., Klesareva, E.A., Efremov, E.E., Sidorova, M.V., Bespalova, Zh.D., Levashov, P.A., Ezhov, M.V., Adamova, I.Yu., Pokrovsky, S.N. (2013) An immunoenzyme method based on chimeric molecule and oligopeptide fragments for determining the autoantibodies to β1-adrenergic receptor in patients with dilated cardiomyopathy. Zh. Klin. Lab. Diagn., (4), 24-27.
  25. Smirnova, I.A., Sjöstrand, D., Li, F., Björck, M., Schäfer, J., Östbye, H., Högbom, M., von Ballmoos, C., Lander, G.C., Ädelroth, P., Brzezinski P. (2016) Isolation of yeast complex IV in native lipid nanodiscs. Biochim. Biophys. Acta (BBA)-Biomembr. 1858(12), 2984–2992. DOI
  26. Szundi, I.; Pitch, S.G.; Chen, E.; Farrens, D.L.; Kliger, D.S. (2021) Styrene-maleic acid copolymer effects on the function of the GPCR rhodopsin in lipid nanoparticles. Biophys. J., 120(20), 4337–4348. DOI
  27. Mueller, S., Kubicek, J., Merino, F., Hanisch, P., Maertens, B., Lackmann, J.-W. (2023) The bigger picture: global analysis of solubilization performance of classical detergents versus new synthetic polymers utilizing shotgun proteomics. bioRxiv preprint. DOI
  28. Marconnet, A., Michon, B., Le Bon, C., Giusti, F., Tribet, C., Zoonens, M. (2020). Solubilization and stabilization of membrane proteins by cycloalkane-modified amphiphilic polymers. Biomacromolecules, 21(8), 3459–3467. DOI
  29. Sun, R., Mak, S., Haschemi, J., Horn P, Luppa, P.B. (2019) Nanodiscs incorporating native β1 adrenergic receptor as a novel approach for the detection of pathological autoantibodies in patients with dilated cardiomyopathy. J. Appl. Lab. Med. 4(3):391-403. DOI
  30. Kock, Z., Ermel, U., Martin, J., Morgner, N., Frangakis, A.S., Dotsch, V., Hilger, D., Bernhard, F. (2022) Biochemical Characterization of cell-free synthesized human β1 adrenergic receptor cotranslationally inserted into nanodiscs. J. Molecular. Biol., 434 (16), 167687. DOI
  31. Harwood,,C.R., Sykes, D.A., Hoare, B.L., Heydenreich, F.M., Uddin, R., Poyner, D.R., Briddon, S.J., Veprintsev, D.B. (2021) Functional solubilization of the β2-adrenoceptor using diisobutylene maleic acid. iScience, 24(12),103362. DOI
  32. Tedesco, D., Maj, M., Malarczyk, P., Cingolani, A., Zaffagnini, M., Wnorowski, A., Czapinski, J., Benelli, T., Mazzoni, R., Bartolini, M., Jozwiak, K. (2021) Application of the SMALP technology to the isolation of GPCRs from low-yielding cell lines. BBA – Biomembranes, 1863(9), 183641. DOI
  33. Wheatley, M., Charlton, J., Jamshad, M., Routledge, S.J., Bailey, S., La-Borde, P.J., Azam, M.T., Logan, R.T., Bill, R.M., Dafforn, T.R., Poyner D.R. (2016) GPCR–styrene maleic acid lipid particles (GPCR–SMALPs): their nature and potential. Biochem. Soc. Trans., 44(2), 619–623, DOI