Modified Knottins as Potential Inhibitors of HCV NS3 Protease

Main Article Content

A.V. Talanova
D.S. Shcherbinin
E.F. Kolesanova
A.V. Veselovsky

Abstract

Knottins form a group of peptides containing approximately 30 amino acid residues. Their structures are stabilized by three disulfide bonds forming a characteristic “pseudo-knotted” structure. Several modifications in knottin from Momordica cochinchinensis were made to convert it to inhibitor of human hepatitis C (HCV) NS3 protease. These modifications of the knottin template included deletion of several residues from the N-terminus, replacement of residues in- and outside the inhibitor loop and replacement of certain L-amino acids by their D-stereoisomers. Binding energy values for protein-knottin complexes were estimated by MM-GBSA methods. Two designed knottins showed high stability in knottin-protease HCV complexes and values of binding energy comparable with known peptide inhibitors from crystal structures.

Article Details

How to Cite
Talanova, A., Shcherbinin, D., Kolesanova, E., & Veselovsky, A. (2024). Modified Knottins as Potential Inhibitors of HCV NS3 Protease. Biomedical Chemistry: Research and Methods, 7(3), e00235. https://doi.org/10.18097/BMCRM00235
Section
EXPERIMENTAL RESEARCH

References

  1. Koch, U., Biasiol, G., Brunetti, M., Fattori, D., Pallaoro, M., Steinkuhler, C. (2001) Role of charged residues in the catalytic mechanism of hepatitis C virus NS3 protease: Electrostatic precollision guidance and transition-state stabilization. Biochemistry, 40(3), 631–640. DOI
  2. Luo, R., Liu, H., Cheng, Z. (2022) Protein scaffolds: Antibody alternatives for cancer diagnosis and therapy. RSC Chem. Biol., 3(7), 830–847. DOI
  3. Reiss, S., Sieber, M., Oberle, V., Wentzel, A., Spangenberg, P., Claus, R., Kolmar, H., Losche, W. (2006) Inhibition of platelet aggregation by grafting RGD and KGD sequences on the structural scaffold of small disulfide-rich proteins. Platelets, 17(3), 153–157. DOI
  4. Pope, J.E., Deer, T.R. (2013) Ziconotide: A clinical update and pharmacologic review. Expert Opin. Pharmacother., 14(7), 957–966. DOI
  5. Castro, J., Harrington, A.M., Hughes, P.A., Martin, C.M., Ge, P., Shea, C.M., Jin, H., Jacobson, S., Hannig, G., Mann, E., Cohen, M.B., MacDougall, J.E., Lavins, B.J., Kurtz, C.B., Silos-Santiago, I., Johnston, J.M., Currie, M.G., Blackshaw, L.A., Brierley, S.M. (2013) Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3',5'-monophosphate. Gastroenterology, 145(6), 1334-1346.e1-11. DOI
  6. Llinas-Brunet, M., Bailey, M., Fazal, G., Goulet, S., Halmos, T., Laplante, S., Maurice, R., Poirier, M., Poupart, M.A., Thibeault, D., Wernic, D., Lamarre, D. (1998) Peptide-based inhibitors of the hepatitis C virus serine protease. Bioorg. Med. Chem. Lett., 8(13), 1713–1718. DOI
  7. Protein Data Bank. http://www.rcsb.org/
  8. Lindahl, E., Abraham, Hess, B., van der Spoel, D. (2021) Gromacs 2021.1 Manual. DOI
  9. Case D.A., Darden T., Cheatham T.E. III, Simmerling C., Wang J., Duke R.E., Luo R., Merz K.M., Pearlman D.A.,Crowley M. (2006) AMBER 9. University of California, San Francisco, 45.
  10. Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A., Moreno, E. (2021) gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory. Comput., 17(10), 6281–6291. DOI
  11. Kugler, J., Schmelz, S., Gentzsch, J., Haid, S., Pollmann, E., van den Heuvel, J., Franke, R., Pietschmann, T., Heinz, D.W., Collins, J. (2012) High affinity peptide inhibitors of the hepatitis C virus NS3-4A protease refractory to common resistant mutants. J. Biol. Chem., 287(46), 39224–39232. DOI
  12. Mergler, M., Dick, F., Sax, B., Stahelin, C., Vorherr, T. (2003) The aspartimide problem in Fmoc-based SPPS. Part II. J. Pept. Sci., 9(8), 518–526. DOI