β1-adrenergic Receptor within Nanodiscs of 10-16 nm in Diameter Retains Ligand-binding Properties
Main Article Content
Abstract
The detection of autoantibodies against the β1-adrenergic receptor (ADRB1 Ab) in the blood of patients and the monitoring of the levels of these antibodies is an urgent need in clinical practice. The solid-phase enzyme-linked immunosorbent assay (ELISA), using ADRB1 in native conformation as antigen, seems to be the most suitable for this task. We have previously tested various amphipathic polymers for their ability to solubilize ADRB1 in the form of nanodiscs so that ADRB1 retains its antigenic properties. The aim of the present work was to investigate the ligand binding properties of ADRB1 in nanodiscs prepared with amphipathic polymers such as UltrasoluteTM Amphipol (UA17) and AASTY 11-45 and to determine the size of the nanodiscs by dynamic light scattering. The binding of the ligands isoproterenol (agonist) and cyanopindolol (antagonist) was assessed by their ability to compete with recombinant hAB2367 antibodies specific for the second extracellular loop of ADRB1 in ELISA. It was found that ADRB1 solubilized with UA17 and AASTY 11-45 retained its ligand-binding properties. This fact supports the assumption that ADRB1 retains its native structure in nanodiscs. The size of nanodiscs prepared with UA17 was determined for the first time by dynamic light scattering. In the range of polymer concentrations from 0.0625% to 0.5%, no significant differences were observed in the size of the nanodiscs, which varied between 10 and 16 nm.
Article Details
References
- Magnusson, Y., Wallukat, G., Waagstein, F., Hjalmarson, A., Hoebeke, J. (1994) Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against the beta1-adrenoceptor with positive chronotropic effect. Circulation, 89, 2760–2767. DOI
- Jahns, R., Boivin, V., Siegmund, C., Inselmann, G., Lohse, M.J., Boege, F. (1999) Autoantibodies activating human beta1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation, 99, 649-654. DOI
- Sterin-Borda, L., Cossio, P.M., Gimeno, M.F., Gimeno, A.L., Diez, C., Laguens, R.P., Meckert, P.C., Arana, R.M. (1976) Effect of chagasic sera on the rat isolated atrial preparation: immunological, morphological and function aspects. Cardiovasc. Res., 10, 613–622. DOI
- Liu, J., Wang, Y., Chen, M., Zhao, W., Wang, X., Wang, H., Zhang, Z., Zhang, J., Xu, L., Chen, J., Yang, X., Zhang, L. (2014) The correlation between peripartum cardiomyopathy and autoantibodies against cardiovascular receptors. PLoS One, 9(1), e86770. DOI
- Kostyukevich, M.V., Zykov, K.A., Mironova, N.A., Agapova, O.Y., Shevelev, A.Y., Efremov, Е.Е., Vlasik, T.N., Golitsyn, S.P. (2016) Role of autoantibodies against β1- adrenergic receptor in cardiovascular diseases. Cardiology, 12, 5–11.
- Boivin-Jahns, V., Jahns, R., Boege, F. (2018) Relevant effects of beta1-adrenoceptor autoantibodies in chronic heart failure. Frontiers in Bioscience, Landmark, 23, 2146-2156. DOI
- Bornholz, B., Roggenbuck, D., Jahns, R., Boege, F. (2014) Diagnostic and therapeutic aspects of beta-adrenergic receptor autoantibodies in human heart disease. Autoimmunity Rev., 13, 954-962. DOI
- Ronspeck, W., Brinckmann, R., Egner, R., Gebauer, F., Winkler, D., Jekow, P., Wallukat, G., Muller, J., Kunze, R. (2003) Peptide based adsorbers for therapeutic immunoadsorption. Ther. Apher. Dial., 7(1), 91-7 DOI
- Dandel, M., Wallukat, G., Englert, A., Lehmkuhl, H.B., Knosalla, C., Hetzer R. (2012) Longterm benefits of immunoadsorption in beta(1)-adrenoceptor autoantibody-positive transplant candidates with dilated cardiomyopathy. Eur. J. Heart Fail, 14(12), 1374-88. DOI
- Wenzel, K., Schulze-Rothe, S., Haberland, A., Müller, J., Wallukat, G., Davideit, H. (2017) Performance and in-house validation of a bioassay for the determination of beta1-autoantibodies found in patients with cardiomyopathy. Heliyon, 3(7), e00362. DOI
- Matsui, S., Fu, M.L., Shimizu, M., Fukuoka, T., Teraoka, K., Takekoshi, N., Murakami, E., Hjalmarson, A. (1995) Dilated cardiomyopathy defines serum autoantibodies against G-protein coupled cardiovascular receptors. Autoimmunity, 21, 85–88. DOI
- Bornholz, B., Hanzen, B., Reinke, Y., Felix, S.B., Jahns, R., Schimke, I., Wallukat, G., Boege F. (2016) Detection of DCM-associated beta1-adrenergic receptor autoantibodies requires functional readouts or native human beta1-receptors as targets. Int J Cardiol, 202, 728-30 DOI
- Jahns, R., Boege, F. (2015) Questionable validity of petide-based ELISA strategies in the diagnostics of cadrdiopathogenic autoantibodies that activate G-protein-coupled receptors. Cardiology, 131, 149-150 DOI
- Boege, F., Westenfeld, R., Jahns, R. (2017) beta1AAb determined by peptide ELISA: A signal in the noise? J. Am. Coll. Cardiol., 70(6), 807-808 DOI
- Holthoff. H.P., Zeibig, S., Boivin, V., Bauer, J., Lohse, M.J., Kaab, S., Clauss, S., Jahns, R., Schlipp, A., Munch, G., Ungerer, M. (2012) Detection of anti beta1-ar auto-antibodies in heart failure by a cell-based competition ELISA. Circ. Res, 111(6), 675-84 DOI
- Shevelev, A.Y., Kostyukevich, M.V., Efremov, E.E., Vlasik, T.N., Mironova, N.A., Zykov, K.A., Kashirina, N.M., Kuznetsova, I.B., Sharf, T.V., Mamochkina, E.N., Lipatova, L.N., Peklo, M.M., Rutkevich, P.N., Yanushevskaya, E.V., Rybalkin, I.N., Stukalova, O.V., Malkina, T.A., Belyaeva, M.M., Kuznetsova, T.V., Tkachev, G.A., Zinchenko, L.V., Gupalo, E.M., Agapova, O.A., Yureneva-Tkhorzhevskaya, T.V., Rvacheva, A.V., Sidorova, M.V., Sadgyan, A.S., Tereshchenko, S.N., Golitsin, S.P. (2016) Detection of autoantibodies against the β1-adrenergic receptor in the sera of patients via the competitive cell-based enzyme linked immunosorbent assay. Cardiology, 56 (11), 61-70. DOI
- Sun, R., Mak, S., Haschemi, J., Horn, P., Boege, F., Luppa, P.B. (2019) Nanodiscs incorporating native β1 adrenergic receptor as a novel approach for the detection of pathological autoantibodies in patients with dilated cardiomyopathy. J. Appl. Lab. Med. 4(3),391-403. DOI
- Krishnarjuna, B., Ramamoorthy, A. (2022) Detergent-free isolation of membrane proteins and strategies to study them in a near-native membrane environment. Biomolecules, 12(8), 1076. DOI
- Orekhov, P.S., Bozdaganyan, M.E., Voskoboynikova, N., Mulkidjanian, A.Y., Karlova, M.G., Yudenko, A., Remeeva, A., Ryzhykau, Y.L., Gushchin, I., Gordeliy, V.I., Sokolova, O.S., Steinhoff, H.J, Kirpichnikov, M.P., Shaitan K.V. (2022) Mechanisms of formation, structure, and dynamics of lipoprotein discs stabilized by amphiphilic copolymers: a comprehensive review. Nanomaterials, 12(3), 361. DOI
- Peclo, M.M., Lipatova, L.N., Kashirina, N.M., Sharf, T.V., Kuznetzova, I.B., Efremov, E.E., Yanushevskaya, E.V., Rutkevich, P.N., Rybalkin, I.N., Vlasik, T.N. (2023) β1-adrenergic receptor solubilized in the form of nanodiscs: screening of various amphipatic polymers. Biomedical Chemistry: Research and Methods, 6(4), e00206. DOI
- Shevelev, A.Y., Kashirina, N.M., Kuznetsova, T.B., Sharf, T.V., Mamochkina, E.N., Agapova, O.Y., Gurskaya, T.K., Lipatova, L.N., Peklo, M.M., Rutkevich, P.N., Yanushevskaya, E.V., Rybalkin, I.N., Skoblov, Y.S., Efremov, E.E., Vlasik, T.N., Zykov, K.A. (2015) Cell line expressing recombinant β1-adrenergic receptor for the agonistic autoantibodies detection by a competitive enzymelinked immunosorbent assay. Vestnik Biotechnol., 11(4), 5–14.
- Afanas’eva, O.I., Klesareva, E.A., Efremov, E.E., Sidorova, M.V., Bespalova, Zh.D., Levashov, P.A., Ezhov, M.V., Adamova, I.Yu., Pokrovsky, S.N. (2013) An immunoenzyme method based on chimeric molecule and oligopeptide fragments for determining the autoantibodies to β1-adrenergic receptor in patients with dilated cardiomyopathy. Zh. Klin. Lab. Diagn., 58(4), 24-27.
- Dörr, J. M., Scheidelaar, S., Koorengevel, M.C., Dominguez, J.J., Schäfer, M., van Walree, C.A., Killian, J.A. (2015). The styrene–maleic acid copolymer: a versatile tool in membrane research. European Biophysics Journal, 45(1), 3–21. DOI
- Orwick-Rydmark, M., Lovett, J.E., Graziadei, A., Lindholm, L., Hicks, M.R., Watts, A. (2012) Detergent-free incorporation of a seven transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett., 12, 4687–4692. DOI