Methods for Determining Individual Amino Acids in Biological Fluids

Main Article Content

E.A. Sarf
L.V. Bel’skaya

Abstract

Determination of the amino acid composition of biological fluids is of great diagnostic importance. Commonly accepted methods of amino acid analysis include chromatography, electrophoresis and mass-spectrometry. However, for research purposes, to solve specific problems, it is often necessary to determine not the complete amino acid profile, but the concentration of individual amino acids. This review presents literature data analysis on methods used for determining individual amino acids in biological fluids. It is shown that amino acids can be determined by spectrophotometric, electrochemical methods, as well as using a wide range of biosensors, are the detection limit is basically comparable to chromatographic methods of analysis.

Article Details

How to Cite
Sarf, E., & Bel’skaya, L. (2025). Methods for Determining Individual Amino Acids in Biological Fluids. Biomedical Chemistry: Research and Methods, 8(1), e00253. https://doi.org/10.18097/BMCRM00253
Section
REVIEWS

References

  1. Ershov, Yu.A. Fundamentals of molecular diagnostics. Metabolomics.Moscow: GEOTAR-Media, 2016. 336 p.
  2. Lomova, N.A., Chagovets, V.V., Dolgopolova, E.L., Novoselova, A.V., Petrova,U.L., Shmakov, R.G., Frankevich, V.E. (2022) Alteration of the amino acidprofile in the mother–fetus system in COVID-19. Vestnik RGMU, 3, 53-63. DOI
  3. Pogorelova, T.N., Gunko, V.O., Nikashina, A.A., Mikhelson, A.A., Mikhelson,A.F., Lebedenko, E.Yu., Alliluyev, I.A. (2018) The influence of amino acidimbalance in the mother and fetus on the formation of placental insufficiency and the course of the neonatal period. Klinicheskaya LaboratornayaDiagnostika, 63(10), 610-614. DOI
  4. Wu, G. 2(010) Functional amino acids in growth, reproduction, and health.Advances in Nutrition, 1(1),31-7. DOI
  5. Okonenko, T.I., Kartysheva, K.Yu., Antropova, G.A., Novikova, A.P. (2022)Physiological mechanisms of replaceable proteinogenic amino acids and theirimportance for neurology. Vestnik NovGU. Meditsinskiye Nauki, 4(129),61–65. DOI
  6. Madzhidova, E.N., Rasulova, H.A., Ziyavitdinov, J.F. (2010) Features of theamino acid composition of cerebrospinal fluid and blood serum in patients withacute ischemic stroke. Nervnyye BOLEZNI, 4, 23-26.
  7. Townsend, D.M., Tew, K.D., Tapiero, H. (2004) Sulfur containing aminoacids and human disease. Biomed. Pharmacother., 58(1), 47-55. DOI
  8. Friedman, M. (2018) Analysis, Nutrition, and Health Benefits of Tryptophan.International Journal of Tryptophan Research, 11, 1178646918802282. DOI
  9. Lanser, L., Kink, P., Egger, E.M., Willenbacher, W., Fuchs, D., Weiss, G., etal. (2020) Inflammation-induced tryptophan breakdown is related with anemia,fatigue, and depression in cancer. Front. Immunol., 11, 249. DOI
  10. Lee, H.O., Uzzo, R.G., Kister, D., Kruger, W.D. (2017) Combination ofserum histidine and plasma tryptophan as a potential biomarker to detect clearcell renal cell carcinoma. J Transl. Med., 15(1), 72. DOI
  11. Krivova, A.V., Kozhevnikova, M.V., Korobkova, E.O., Zektser, V.Yu.,Zheleznykh, E.A., Ageyev, A.A., Moskaleva, N.E., Kukharenko, A.V.,Appolonova, S.A., Belenkov, Yu.N. (2022) Aromatic amino acids: phenylalanineand tyrosine in patients with arterial hypertension and ischemic heartdisease. Ratsional’naya Farmakoterapiya v Kardiologii, 18(3), 297-305. DOI
  12. Scholl-Bürgi, S., Sass, J.O., Heinz-Erian, P., Amann, E., Haberlandt, E.,Albrecht, U., Ertl, C., Sigl, S.B., Lagler, F., Rostasy, K., Karall, D. (2010)Changes in plasma amino acid concentrations with increasing age in patientswith propionic acidemia. Amino Acids, 38(5), 1473-81. DOI
  13. Narezhnaya, E.V., Krukier, I.I., Avrutskaya, V.V., Nikashina, A.A., Serkova,S.V. (2013) Determination of the level of l-citrulline in amniotic fluid in womenwith physiological pregnancy by capillary electrophoresis. KlinicheskayaLaboratornaya Diagnostika, 1, 39-41.
  14. Amosova, O.E., Mashina, E.V., Shanina, S.N. (2020) Amino acids asbiomarkers of phase composition of choleliths. Vestnik Instituta Geologii KomiNTS UrO RAN, 10(310), 22-30. DOI
  15. Reddy, I.; Sherlin, H.J.; Ramani, P.; Premkumar, P.; Natesan, A.;Chandrasekar, T. (2012) Amino acid profile of saliva from patients with oralsquamous cell carcinoma using high performance liquid chromatography. J OralSci, 54(3), 279-283. DOI
  16. de Sá Alves, M., de Sá Rodrigues, N., Bandeira, C.M. et al. (2021)Identification of possible salivary metabolic biomarkers and altered metabolicpathways in south american patients diagnosed with oral squamous cellcarcinoma. Metabolites 11, 650. DOI
  17. García-Villaescusa, A., Morales-Tatay, J.M., Monleón-Salvadó, D.,González-Darder, J.M., Bellot-Arcis, C., Montiel-Company, J.M., Almerich-Silla, J.M. (2018) Using NMR in saliva to identify possible biomarkers ofglioblastoma and chronic periodontitis. PLoS ONE, 13 (2), e0188710. DOI
  18. Hershberger, C.E., Rodarte, A.I., Siddiqi, S., Moro, A., Acevedo-Moreno,L.A., Brown, J.M., Allende, D.S., Aucejo, F., Rotroff, D.M. (2021) SalivaryMetabolites are Promising Non-Invasive Biomarkers of HepatocellularCarcinoma and Chronic Liver Disease. Liver Cancer Int., 2 (2), 33-44. DOI
  19. Takamori, S., Ishikawa, S., Suzuki, J., Oizumi, H., Uchida, T., Ueda, S.,Edamatsu, K., Iino, M., Sugimoto, M. (2022) Differential diagnosis of lungcancer and benign lung lesion using salivary metabolites: A preliminary study.Thorac. Cancer, 13 (3), 460-465. DOI
  20. Muller Bark, J., Karpe, A.V., Doecke, J.D., Leo, P., Jeffree, R.L., Chua, B.,Day, B.W., Beale, D.J., Punyadeera. C. (2023) A pilot study: Metabolic profilingof plasma and saliva samples from newly diagnosed glioblastoma patients.Cancer Med., 12(10), 11427-11437. DOI
  21. Cheng, F., Wang, Z., Huang, Y., Duan, Y., Wang, X. (2015) Investigation ofsalivary free amino acid profile for early diagnosis of breast cancer with ultraperformance liquid chromatography-mass spectrometry. Clin. Chim. Acta,20(447), 23-31. DOI
  22. Hasan, M.M., Razu, M.H., Akter, S., Mou, S.A., Islam, M., Khan, M. (2024)Development and validation of a non-invasive method for quantifying aminoacids in human saliva. RSC Adv., 14(31), 22292-22303. DOI
  23. Vorozheikin, S.B., Vorozheikina, S.S. (2008) Amino acids: mainachievements of methods for their analysis and separation. Vestnik IKIAT,2(17), 163-168.
  24. Kaur, J., Rangra, N.K., Chawla, P.A. (2023) A comprehensive review onrecent trends in amino acids detection through analytical techniques. SeparationScience Plus, 6(11), 2300040. DOI
  25. Gałęzowska, G., Ratajczyk, J., Wolska, L. (2021) Determination of aminoacids in human biological fluids by high-performance liquid chromatography:critical review. Amino Acids, 53(7), 993-1009. DOI
  26. Magerramova, L.M., Dzhafarova, N.A., Suleimanova, E.I. (2023) Methodsof physicochemical analysis for the determination of tryptophan. Vestnik KNIIRAN. Seriya «Yestestvennyye i Tekhnicheskiye Nauki», 2(13), 48-57. DOI
  27. Hasani, M., Yaghoubi, L., Abdollahi, H. (2007) A kinetic spectrophotometricmethod for simultaneous determination of glycine and lysine by artificial neuralnetworks. Anal. Biochem., 365(1), 74-81. DOI
  28. Nikolaeva, E.A., Mamedov, I.S., Zolkina, I.V. (2011) Modern technologiesfor diagnosing hereditary diseases of amino acid metabolism. RossiyskiyVestnik Perinatologii i Pediatrii, 4, 20-30.
  29. Danilova, L.A. Biochemistry. St. Petersburg: SpetsLit, 2020, 333 p..
  30. Eid S.M., Farag M.A., Bawazeer S. (2022) Underivatized amino acidchromatographic separation: optimized conditions for hplc-uv simultaneousquantification of isoleucine, leucine, lysine, threonine, histidine, valine,methionine, phenylalanine, tryptophan, and tyrosine in dietary supplements.ACS Omega, 7(35), 31106-31114. DOI
  31. Casetta, B, Tagliacozzi, D, Shushan, B, Federici, G. (2000) Developmentof a method for rapid quantitation of amino acids by liquid chromatographytandemmass spectrometry (LC-MSMS) in plasma. Clin. Chem. Lab. Med.,38(5), 391-401. DOI
  32. Song, Y, Xu, C, Kuroki, H, Liao, Y, Tsunoda, M. (2018) Recent trends inanalytical methods for the determination of amino acids in biological samples.J. Pharm. Biomed. Anal., 147, 35-49. DOI
  33. Tush, E.V., Eliseeva, T.I., Khaletskaya, O.V., Krasilnikova, S.V.,Ovsyannikov, D.Yu., Potemina, T.E., Ignatov, S.K. (2019) Markers of the stateof the extracellular matrix and methods of their study (review). SovremennyyeTekhnologi v Meditsine, 2, 133-149. DOI
  34. Salamatov, A.A., Simonyan, A.V., Pokrovskaya, Yu.S., Avanesyan, A.A.(2007) Development of an accessible method for the quantitative determinationof α-amino acids. Volgogradskiy Nauchno-Meditsinskiy Zhurnal, 2, 17-19.
  35. Suleymanova, E.I. (2023) Application of the spectrophotometric method forthe determination of amino acids. Vestnik Bashkirskogo Universiteta, 28(1),100-104. DOI
  36. Nashchekina, Yu.A., Kurdyukova, K.E., Zorin, I.M., Mikhailova,N.A., Bilibin, A.Yu. (2018) Spectrophotometric determination of L-lysineconcentration in aqueous organic solutions. Zhurnal Tekhnicheskoy Fiziki,9(88), 13843-1386. DOI
  37. Qadri, S., Rathod, I., Kanakia, D. (2007) Colorimetry method for estimationof glycine, alanine and isoleucine. Indian Journal of Pharmaceutical Sciences,69(3), 345–366. DOI
  38. Nergiz, M., Zenger, O., Peşint, G.B. (2024) L-proline determinationby molecularly imprinted nanoparticles: A potential nanoscale tool for thediagnosis of metabolic disorders. J. Chromatogr. A, 1730, 465106. DOI
  39. Berketa, K., Saiapina, O., Fayura, L., Sibirny, A., Dzyadevych, S., Soldatkin,O. (2022) Novel highly sensitive conductometric biosensor based on argininedeiminase from Mycoplasma hominis for determination of arginine. Sensors &Actuators: B. Chemical, 367, 132023 DOI
  40. Lavanya, R., Poovarasan, S., Srinivasadesikan, V., Lin, M.-c., Padmini,V. (2023) Selective fluorescence turn-off detection of lysine by a curcuminderivative with real sample analysis. Journal of Photochemistry&Photobiology,A: Chemistry, 444: 115008. DOI
  41. Pundir, C.S., Nohwal, B., Chaudhary, R. (2021) A comprehensive review ofmethods for determination of l-lysine with detailed description of biosensors.Int. J. Biol. Macromol., 1:186:445-461. DOI
  42. Kugimiya, A, Takamitsu, E. (2013) Spectrophotometric detection ofhistidine and lysine using combined enzymatic reactions. Mater. Sci. Eng. CMater. Biol. Appl., 33(8), 4867-70. DOI
  43. Chernova, R.K., Varygina, O.V., Berezkina, N.S. (2015) Selectivedetermination of histidine in mixed solutions of α-amino acids. IzvestiyaSaratovskogo Universiteta. Novaya Seriya. Seriya Khimiya. Biologiya.Ekologiya, 4, 15-21.
  44. Vecchione, G., Margaglione, M., Grandone, E., Colaizzo, D., Cappucci, G.,Fermo, I., D’Angelo, A., Di Minno, G. (1999) Determining sulfur-containingamino acids by capillary electrophoresis: a fast novel method for totalhomocyst(e)ine human plasma. Electrophoresis, 20(3), 569-74. DOI
  45. Lochman, P., Adam, T., Friedecký, D., Hlídková, E., Skopková, Z. (2003)High-throughput capillary electrophoretic method for determination oftotal aminothiols in plasma and urine. Electrophoresis, 24(7-8), 1200-7. DOI
  46. Belskaya, L.V., Sarf, E.A. (2024) Application of the capillary electrophoresismethod for the quantitative determination of tryptophan in the saliva of breastcancer patients. Klinicheskaya Laboratornaya Diagnostika, 69(4), 117-122. DOI
  47. Wentao, Y., Zhang, H., Chen, G., Chunyan, T. (2004) Novel method forspectrophotometric determination of l-tryptophan in the enzymatic resolution ofdl-n-acetyl-tryptophan. Microchimica Acta, 146, 285-290. DOI
  48. Hosokawa, Sh., Morinishi, T., Ohara, K., Yamaguchi, K. (2023) Aspectrophotometric method for the determination of tryptophan followingoxidation by the addition of sodium hypochlorite pentahydrate. PLOS One,18(1), 3-10. DOI
  49. Gavrilov, V.B., Lobko, N.F., Konev, S.V. (2004) Determination of tyrosineand tryptophan-containing peptides in blood plasma by absorption in the UVspectral region. Klinicheskaya Laboratornaya Diagnostika, 3, 12-16.
  50. Kavitha, C., Bramhaiah, K., John, N.S. (2020) Low-cost electrochemicaldetection of l-tyrosine using an rGO-Cu modified pencil graphiteelectrode and its surface orientation on an Ag electrode using an ex situspectroelectrochemical method. RSC Adv, 10(39):22871-22880. DOI
  51. Liu, M., Lao, J., Wang, H., Su, Z., Liu, J., Wen, L., Yin, Z., Luo, Q., Peng, H.(2021) Electrochemical determination of tyrosine on glassy carbon electrodemodified with graphene composite and gold nanoparticles. Elektrokhimiya,57(1), 47-58. DOI
  52. Aravin, O.I., Novikov, A.Yu., Selifonova, E.I., Chernova, R.K., Shevyrev, S.P.(2011) Application of the artificial neural network method for determining someamino acids in binary mixtures. Izvestiya Saratovskogo Universiteta. NovayaSeriya. Seriya Matematika. Mekhanika. Informatika, 1, 105-111
  53. Petrova, Y.Yu. (2010) A sorption-catalytic procedure for determininghistamine. Journal of Analytical Chemistry, 65(5), 525-534. DOI
  54. Beklemishev, M.K., Petrova, Yu.Yu., Abramova, O.M., Dolmanova, I.F.(2003) Sorption-catalytic method for determining nitrogen-containing organiccompounds. Vestnik Moskovskogo Universiteta. Seriya 2. Khimiya, 44(2),115-122.
  55. Suleymanova, E.I. (2023) Application of physical and chemical methods ofanalysis for the determination of alanine. Vestnik Bashkirskogo Universiteta,28(2), 206-210. DOI
  56. Arzumanyan, V.G., Foshina, E.P., Ozhovan, I.M., Iksanova, A.M.,Kolyganova, T.I., Mironov, A.Yu. (2021) Method for determining salivaryhistatins. Klinicheskaya Laboratornaya Diagnostika, 66(6), 358-363. DOI
  57. Kolbasova, E.A., Kiseleva, N.I., Naumov, A.V. (2021) Sulfur-containingamino acids and their derivative metabolites in postmenopausal women withmenopausal syndrome. Vestnik VGMU, 1, 72-80. DOI
  58. Maistrenko, V.N., Ilyasova, R.R., Kudasheva, F.Kh., Sadretdinov, M.A.,Maistrenko, T.V. (2008) Quantitative analysis of α-amino acids in the urine ofneurosurgical patients using thin layer chromatography on Armsorb plates.Vestnik Bashkirskogo Universiteta, 13(2), 265-298.
  59. Xiao-Lan, Y., Ning, X., Yong, H., Guang, P., Xue, Y., Fen, X. (2014) Researchprogress and application prospect of near-infrared spectroscopy in analysis offood amino acid. Chinese, 34(9), 2377-81. DOI
  60. Guzova, V.A., Stroganova, E.A. (2024) Application of IR spectroscopymethod for detection of tyrosine obtained from metabolites. Vestnik Nauki,6(75), 1916-1921.
  61. Aitekenov, S., Sultangaziyev, A., Abdirova, P., Yussupova, L., Gaipov, A.,Utegulov ,Z., Bukasov, R. (2023) Raman, Infrared and Brillouin Spectroscopiesof Biofluids for Medical Diagnostics and for Detection of Biomarkers. Crit.Rev. Anal. Chem., 53(7), 1561-1590. DOI
  62. Gordetsov, A.S. (2010) Infrared spectroscopy of biological fluids and tissues.Sovremennyye Tekhnologii v Meditsine, 1,84-98.
  63. Kazarina, L.N., Gordetsov, A.S., Smetanina, O.A., Krasnikova, O.V.(2017) Diagnosis and prevention of gingivitis using the method of infraredspectroscopy of biological fluids of the oral cavity. Vyatskiy MeditsinskiyVestnik, 3(55), 60-63. DOI
  64. Belskaya, L.V., Sarf, E.A., Solomatin, D.V. (2019) Quantitativedetermination of lipid content in biological material using infrared spectroscopy.Klinicheskaya Laboratornaya Diagnostika, 64(4), 204-209. DOI
  65. Wolpert, M, Hellwig, P. (2006) Infrared spectra and molar absorptioncoefficients of the 20 alpha amino acids in aqueous solutions in the spectral rangefrom 1800 to 500 cm(-1). Spectrochim. Acta A Mol. Biomol. Spectrosc., 64(4),987-1001. DOI