Investigation in Silico the Interaction of Oxazolinyl Derivatives of [17(20)E]-21-norpregnene with Androgen Receptor

Main Article Content

K.A. Shcherbakov
D.S. Shcherbinin
V.A. Kostin
V.A. Zolottsev
A.Yu. Misharin
A.V. Veselovsky

Abstract

The ability of novel oxazolinyl derivatives of pregna-5,17(20)-diene to interact with the androgen receptor (AR) was investigated using molecular modelling methods. Six new derivatives differed in oxazolinyl radicals in 17 position were used. It was shown that all compounds were able to docked in the ligand-binding domain of AR only when the AR helix-12 was removed. It is suggested that these compounds have antagonistic properties. Results of docking and simulation of molecular dynamics with estimation of binding energy allow to predict that two compounds can be effective AR antagonists.

Article Details

How to Cite
Shcherbakov, K., Shcherbinin, D., Kostin, V., Zolottsev, V., Misharin, A., & Veselovsky, A. (2018). Investigation in Silico the Interaction of Oxazolinyl Derivatives of [17(20)E]-21-norpregnene with Androgen Receptor. Biomedical Chemistry: Research and Methods, 1(1), e00008. https://doi.org/10.18097/BMCRM00008
Section
EXPERIMENTAL RESEARCH

References

  1. Vasaitis, T.S., Bruno, R.D., & Njar V.C.O. (2011). CYP17 inhibitors for prostate cancer therapy. J. Steroid Biochem. Mol. Biol., 125. 24-30. DOI
  2. Baston, E., & Leroux, F.R. (2007). Inhibitors of Steroidal Cytochrome P450 Enzymes as Targets for Drug Development. Recent Pat. Anti-Cancer Drug. Disc., 2, 31-58. DOI
  3. Bruno, R.D., & Nja,r V.C.O. (2007). Targeting cytochrome P450 enzymes: A new approach in anti-cancer drug development. Bioorgan. Med. Chem., 15, 5047-5060. DOI
  4. de Bono, J.S., Logothetis, C.J., Molina, A., Fizazi, K., North, S., Chu, L., Chi, K.N., Jones, R.J., Goodman, O.B. Jr., Saad, F., StaVurth, J.N., Mainwaring, P., Harland, S., Flaig, T.W., Hutson, T.E., Cheng, T., Patterson, H., Hainsworth, J.D., Ryan, C.J., Sternberg, C.N., Ellard, S.L., Fléchon, A., Saleh, M., Scholz, M., Efstathiou, E,, Zivi, A., Bianchini, D., Loriot, Y., ChieVo, N., Kheoh, T., Haqq, C.M., Scher, H.I., & COU-AA-301 Investigators. (2011). Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med., 364, 1995-2005. DOI
  5. Vasaitis, T., Belosay, A., Schayowitz, A., Khandelwal, A., Chopra, P., Gediya, L.K., Guo, Z., Fang, H.B., Njar, V.C., & Brodie, A.M. (2008). Androgen receptor inactivation contributes to antitumor efficacy of 17{alpha}-hydroxylase/17, 20-lyase inhibitor 3beta-hydroxy-17-(1H-benzimidazole-1-yl) androsta-5,16-diene in prostate cancer. Mol. Cancer Ther., 7, 2348-2357. DOI
  6. Gao, W., Bohl, C.E., & Dalton, J.T. (2005). Chemistry and Structural Biology of Androgen Receptor. Chem. Rev.,105, 3352-702. DOI
  7. Tindall, D., Mohler, J. (eds). Androgen Action in Prostate Cancer. Dordrecht, Heidelberg, London, New York.- Springer - 2009.
  8. Thakur, A., Roy, A., Ghosh, A., Chhabra, M., & Banerjee, S. (2018). Abiraterone acetate in the treatment of prostate cancer. Biomed Pharmacother., 101, 211-218. DOI
  9. Njar, V.C., Brodie, A.M. (2015). Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J. Med. Chem., 58, 2077-2087. DOI
  10. Bastos, D.A., & Antonarakis, E.S. (2016). Galeterone for the treatment of advanced prostate cancer: the evidence to date. Drug Des Devel Ther., 10, 2289-2297. DOI
  11. Crona, D.J., Milowsky, M.I., & Whang, Y,E. (2015). Androgen receptor targeting drugs in castration-resistant prostate cancer and mechanisms of resistance. Clin. Pharmacol. Ther., 98(6), 582-589. DOI
  12. Yin, L., & Hu, Q. (2014). CYP17 inhibitors--abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nat. Rev. Urol., 11(1), 32-42. DOI
  13. Stulov S.V., & Misharin A.Yu. (2012). Synthesis of steroids with nitrogen-containing substituents in ring D. Chemistry of heterocyclic compounds, 1536-1582.
  14. Kuzikov, A.V., Dugin, N.O., Stulov, S.V., Shcherbinin, D.S., Zharkova, M.S., Tkachev, Y.V., Timofeev, V.P., Veselovsky, A.V., Shumyantseva, V.V., & Misharin, A.Y. (2014). Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17α-hydroxylase/17,20-lyase (CYP17A1) inhibitors. Steroids., 88, 66-71. DOI
  15. Kostin, V.A., Zolottsev, V.A., Kuzikov, A.V., Masamrekh, R.A., Shumyantseva, V.V., Veselovsky, A.V., Stulov, S.V., Novikov, R.A., Timofeev, V.P., & Misharin, A.Y. (2016). Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity. Steroids, 115, 114-122. DOI
  16. Zolottsev, V.A., Tkachev, Y.V., Latysheva, A.S., Kostin, V.A., Novikov, R.A., Timofeev, V.P., Morozevich, G.E., Kuzikov, A.V., Shumyantseva, V.V., & Misharin, A.Y. (2018). Comparison of [17(20)E]-21-Norpregnene oxazolinyl and benzoxazolyl derivatives as inhibitors of CYP17A1 activity and prostate carcinoma cells growth. Steroids, 129, 24-34. DOI
  17. Stulov, S.V., Mankevich, O.V., Novikov, R.A., Tkachev, Y.V., Timofeev, V.P., Dugin, N.O., Pozdnev, V.F., Fedyushkina, I.V., Scherbinin, D.S., Veselovsky, A.V., & Misharin, A.Yu. (2013) Synthesis and molecular modeling of (4'R)- and (4'S)- 4'-substituted 2'-{[(E)-androst-5-en-17-ylidene]-methyl}oxazolines. Steroids, 78, 521-527. DOI
  18. HyperChem(TM) Professional 7.51, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA
  19. James Stewart. MOPAC Home Page. Stewart Computational Chemistry, 2012.
  20. Trott, O., & Olson, A.J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 31(2), 455-461.
  21. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., & Olson, A.J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 30(16), 2785-2791. DOI
  22. Cantin, L., Faucher, F., Couture, J.F., de Jesus-Tran, K.P., Legrand, P., Ciobanu, .LC., Frechette, Y., Labrecque, R., Singh, S.M., Labrie, F., & Breton. R. (2007). Structural characterization of the human androgen receptor ligand-binding domain complexed with EM5744, a rationally designed steroidal ligand bearing a bulky chain directed toward helix 12. J. Biol. Chem., 282(42), 30910-30919. DOI
  23. Laskowski, R.A., & Swindells, M.B. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 51, 2778-2786. DOI
  24. Salomon-Ferrer, R., Case, D.A., & Walker, R.C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 3(2), 198-210. DOI
  25. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. J. Mol. Graph., 14(1), 33-38. DOI
  26. Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 10(5), 449-461. DOI
  27. Davey, R.A., & Grossmann, M. (2016). Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin. Biochem. Rev., 37(1), 3-15.
  28. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., & Klein, M.L. (1983) Comparison of simple potential functions for simulating liquid water, J. Chem. Phys., 79(2), 926-935. DOI
  29. Wang, Y., Han, R., Zhang, H., Liu, H., Li, J., Liu, H., & Gramatica, P. (2017) Combined Ligand/Structure-Based Virtual Screening and Molecular Dynamics Simulations of Steroidal Androgen Receptor Antagonists. Biomed. Res. Int., 3572394. DOI
  30. Stulov, S.V., Dugin, N.O., Zharkova, M.S., Shcherbinin, D.S., Kuzikov, A.V., Shumantseva, V.V., Misharin, A.Yu., & Veselovsky, A.V. (2015) Interaction of Novel Oxazoline Derivatives of 17(20) E-pregna-5,17(20)-Diene with Cytochrome P450 17 A1. Bioсhemistry (Moscow) Suppl Ser B: Biomedical Chemistry, 9(2), 114-120. DOI