Construction of a Chimeric Human Gene Encoding Renalase with a Modified N-terminus


  • V.I. Fedchenko Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • A.A. Kaloshin Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • N.I. Kozlova Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • A.T. Kopylov Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • A.E. Medvedev Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia



signal sequence; renalase; expression; cloning; PCR


Renalase (RNLS) is a recently discovered protein that plays different roles inside and outside cells. Extracellular RNLS exhibits protective effects on the cell, acting on its receptor proteins, while intracellular RNLS acts as FAD-dependent oxidoreductase (EC The ratio of the intracellular and extracellular forms of this protein, as well as the mechanisms and factors responsible for its transport from the cell, remain unknown. One of the approaches to studying these issues can be the creation of chimeric forms of this protein with modified fragments of its amino acid sequences. This work describes a method for constructing a chimeric human RNLS gene encoding RNLS without its N-terminal peptid


  1. Xu J., Li G., Wang P., Velazquez H., Yao X., Li Y, Wu Y., Peixoto A., Crowley S., Desir G.V. (2005) Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Invest, 115(5), 1275–1280. DOI
  2. Medvedev A.E., Veselovsky A.V., Fedchenko V.I. (2010) Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems. Biochemistry (Moscow), 75(8), 951-958. DOI
  3. Baroni S., Milani M., Pandini V., Pavesi G., Horner D., Aliverti A. (2013) Is renalase a novel player in catecholaminergic signaling? The mystery of the catalytic activity of an intriguing new flavoenzyme. Curr. Pharm. Des., 19, 2540-2551. DOI
  4. Desir G.V., Peixoto A.J. (2014) Renalase in hypertension and kidney disease. Nephrol. Dial. Transplant., 29(1), 22-28. DOI
  5. Moran G.R. (2016) The catalytic function of renalase: A decade of phantoms. Biochim. Biophys Acta, 1864(1),177-186. DOI
  6. 6.Wang Y., Safirstein R., Velazquez H., Guo X.J., Hollander L., Chang J., Chen T.M., Mu J.J., Desir G.V. (2017) Extracellular renalase protects cells and organs by outside-in signalling. J. Cell Mol. Med., 21(7), 1260-1265. DOI
  7. Kolodecik T.R., Reed A.M., Date K., Shugrue C.A., Patel V., Chung S.L., Desir G.V., Gorelick F.S. (2017) The serum protein renalase reduces injury in experimental pancreatitis. J. Biol. Chem. 292(51), 21047–21059. DOI
  8. Wang L., Velazquez H., Chang J., Safirstein R., Desir G.V. (2015) Identification of a receptor for extracellular renalase. PLoS One, 10, e0122932. DOI
  9. Moran G.R., Hoag M.R. (2017) The enzyme: Renalase. Arch. Biochem. Biophys., 632, 66-76. DOI
  10. Milani M., Ciriello F., Baroni S., Pandini V., Canevari G.,Bolognesi M., Aliverti A. (2011) FAD-binding site and NADP reactivity in human renalase: a new enzyme involved in blood pressure regulation. J. Mol. Biol., 411(2), 463-473. DOI
  11. Fedchenko V.I., Buneeva O.A., Kopylov A.T., Veselovsky A.V., Zgoda V.G., Medvedev A.E. (2015) Human urinary renalase lacks the N-terminal signal peptide crucialfor accommodation of its FAD cofactor. International Journal of Biological Macromolecules, 78, 347–353. DOI
  12. Fedchenko V., Kopylov A., Kozlova N., Buneeva O., Kaloshin A., Zgoda V., Medvedev A. (2016) Renalase Secreted by Human Kidney НЕК293Т Cells Lacks its N-Terminal Peptide: Implications for Putative Mechanisms of Renalase Action. Kidney Blood Press Res., 41, 593-603. DOI
  13. Fedchenko V.I., Kaloshin A.A. (2019) A simplified method for obtaining cDNA of low-copy and silent eukaryotic genes using human renalase as an example. Biomedical Chemistry: Research and Methods. 2(2), e00101. DOI
  14. Fedchenko V. I., Kaloshin A.A., Mezhevikina L.M., Buneeva O.A., Medvedev A.E. (2013) Construction of the Coding Sequence of the Transcription Variant 2 of the Human Renalase Gene and Its Expression in the Prokaryotic System. Int. J. Mol. Sci. 14, (6), 12764-12779. DOI
  15. Lee, P.Y., Costumbrado, J., Hsu, C.Y., Kim, Y. H. (2012) Agarose Gel Electrophoresis for the Separation of DNA Fragments. J. Vis. Exp., 62, e3923, DOI
  16. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; 227, 680-685. DOI
  17. Kushner, S. R. (1978). An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In: Genetic engineering (Boyer H.B. and Nicosia S., eds.), p. 17, Elsevier/North-Holland, Amsterdam.
  18. Cohen, S.N., Chang, A.C.Y., Hsu, L. (1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Esherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA, 69, 2110-2114.
  19. Gallagher S., Winston S.E., Fuller S.A., Hurrell J. G.R. (2011) Immunoblotting and Immunodetection. Current Protocols in Cell Biology 52 (1), 6.2.1-6.2.28.
  20. Kopylov A.T., Fedchenko V.I., Buneeva O.A., Pyatakova N.V., Zgoda V.G., Medvedev A.E. (2018) A new method for quantitative determination of renalase based on mass-spectrometry determination of a proteotypic peptide labeled with stable isotopes. Rapid Communications in Mass Spectrometry. 32(15), 1263-1270, DOI



How to Cite

Fedchenko, V., Kaloshin, A., Kozlova, N., Kopylov, A., & Medvedev, A. (2020). Construction of a Chimeric Human Gene Encoding Renalase with a Modified N-terminus. Biomedical Chemistry: Research and Methods, 3(3), e00137.