Determination of Cholesterol and Triglyceride Concentrations in Serum Extracellular Vesicles Using Commercial Kits

Authors

  • A.A. Yakovlev Institute of Higher Nervous Activity and Neurophysiology RAS, 5A Butlerova str., Moscow, 117485 Russia; Scientific and Practical Psychoneurological Center named after Z.P. Solovy’ov DZM, 43 Donskaya str., Moscow, 115419 Russia
  • V.D. Antonov Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow region, Russia
  • T.A. Druzhkova Scientific and Practical Psychoneurological Center named after Z.P. Solovy’ov DZM, 43 Donskaya str., Moscow, 115419 Russia
  • A.B. Guekht Scientific and Practical Psychoneurological Center named after Z.P. Solovy’ov DZM, 43 Donskaya str., Moscow, 115419 Russia
  • N.V. Gulyaeva Institute of Higher Nervous Activity and Neurophysiology RAS, 5A Butlerova str., Moscow, 117485 Russia; Scientific and Practical Psychoneurological Center named after Z.P. Solovy’ov DZM, 43 Donskaya str., Moscow, 115419 Russia

DOI:

https://doi.org/10.18097/BMCRM00148

Keywords:

triglycerides; cholesterol; dynamic light scattering; blood serum; small extracellular vesicles

Abstract

Exosomes and microvesicles, collectively referred to as small extracellular vesicles (sEV) are vesicles with an average size of about 100-150 nm. Currently, the role of sEV in various aspects of signaling in the body is being actively investigated; in addition, sEV can often serve as markers of various pathologies. The active study of the sEV composition is continuing. In this study we have demonstrated that in sEV it is possible to determine cholesterol and triglycerides concentration by using commercial kits designed for serum. The technique was tested on sEV from the blood of patients diagnosed with depression and on healthy volunteers. No differences were found in the concentration of cholesterol and triglycerides in mEV from the blood serum of depressed patients and the control group. The concentration of cholesterol and triglycerides in the samples is several times higher than the sensitivity threshold of the methods set by the manufacturer of the kits.

References

  1. Bavisotto, C. C. et al. (2019) Extracellular Vesicle-Mediated Cell-Cell Communication in the Nervous System: Focus on Neurological Diseases. Int. J. Mol. Sci., 20(2), 434. DOI
  2. Hoshino, A. et al., (2015) Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329-335. DOI
  3. Fiandaca, M. S. et al. (2015) Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers & Dementia, 11,(6), 600-607. DOI
  4. Kamerkar, S. et al. (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 546(659), 498-503. DOI
  5. Osteikoetxea, X. et al. (2015) Improved Characterization of EV Preparations Based on Protein to Lipid Ratio and Lipid Properties. Plos One, 10(3), e0121184. DOI
  6. Lai, R. C. et al. (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214-222. DOI
  7. Wubbolts, R. et al. (2003) Proteomic and biochemical analyses of human B cell-derived exosomes - Potential implications for their function and multivesicular body formation. Journal of Biological Chemistry, 278(13), 10963-10972. DOI
  8. Record, M., Carayon K., Poirot M., Silvente-Poirot, S. (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 1841(1), 108-120. DOI
  9. Skotland, T., Hessvik, N. P., Sandvig, K., Llorente, A. (2019) Thematic Review Series: Exosomes and Microvesicles: Lipids as Key Components of their Biogenesis and Functions Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. Journal of Lipid Research, 60(1), 9-18. DOI
  10. Banks, W. A., Sharma, P., Bullock, K. M., Hansen, K. M., Ludwig, N., Whiteside, T. L. (2020) Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. International Journal of Molecular Sciences, 21(12), 4407. DOI
  11. Goetzl, E. J. et al. (2016) Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer's disease. Faseb Journal, 30(1), 3853-3859. DOI
  12. Morad, G. et al. (2019) Tumor-Derived Extracellular Vesicles Breach the Intact Blood-Brain Barrier via Transcytosis. Acs Nano, 13(12), 13853-13865. DOI
  13. Jow, G. M., Yang, T. T., Chen, C. L. (2006) Leptin and cholesterol levels are low in major depressive disorder, but high in schizophrenia. Journal of Affective Disorders, 90(1), pp. 21-27. DOI
  14. Liu, T. et al. (2015) A Meta-Analysis of Oxidative Stress Markers in Depression. Plos One, 10(10), e0138904. DOI
  15. Sarchiapone, M. et al. (2001) Cholesterol and serotonin indices in depressed and suicidal patients. Journal of Affective Disorders, 62(3), 217-219. DOI
  16. Lalovic, A. et al. (2004) Investigation of completed suicide and genes involved in cholesterol metabolism. Journal of Affective Disorders, 79(1-3), 25-32. DOI
  17. Ng, F., Berk, M., Dean, O., Bush, A. I. (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. International Journal of Neuropsychopharmacology, 11(6), 851-876. DOI
  18. Maes, M., Galecki, P., Chang, Y. S., Berk, M. (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(3), 676-692. DOI
  19. Lutjohann, D. et al. (2000) Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. Journal of Lipid Research, 41(2), 195-198. DOI
  20. Liu, D. S. K. et al. (2020) Size-Exclusion Chromatography as a Technique for the Investigation of Novel Extracellular Vesicles in Cancer. Cancers, 12(11), 3156. DOI
  21. Yakovlev, A. A. et al. (2019) Elevated Levels of Serum Exosomes in Patients with Major Depressive Disorder. Neurochemical Journal, 13(4), 85-390. DOI
  22. Yakovlev, A. A., Druzhkova, T. A., Guekht A. B., Gulyaeva, N. V. (2020) Sensitivity of Extracellular Vesicles from Human Blood Serum to Various Detergents. Biomedical Chemistry: Research and Methods, 3(4), e00143. DOI
  23. Witwer, K. W. et al. (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles, 2(1), 20360. DOI
  24. Gamez-Valero, A., Monguio-Tortajada, M., Carreras-Planella, L., Marcel-la, F., Beyer, K., Borras, F. E. (2016) Size-Exclusion Chromatography-based isolation minimally alters Extracellular Vesicles' characteristics compared to precipitating agents. Sci. Rep., 6, 3641. DOI

Published

2021-06-29

How to Cite

Yakovlev, A., Antonov, V., Druzhkova, T., Guekht, A., & Gulyaeva, N. (2021). Determination of Cholesterol and Triglyceride Concentrations in Serum Extracellular Vesicles Using Commercial Kits. Biomedical Chemistry: Research and Methods, 4(2), e00148. https://doi.org/10.18097/BMCRM00148

Issue

Section

EXPERIMENTAL RESEARCH