QSAR Modeling of Acute Neurotoxicity of Some Organic Solvents with Respect to Rodents

  • V.Yu. Grigorev Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia
  • O.E. Raevskaya Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia
  • A.V. Yarkov Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia
  • O.A. Raevsky Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia
Keywords: acute neurotoxicity, QSAR, HYBOT

Abstract

Using literature data analysis, the regression models of acute sublethal neurotoxicity of 47 organic solvents with respect to rats and mice have been developed. To construct the models, we used linear regression, random forest and support vector machines approaches. The linear regression equations were selected as the best models. They are designed on the basis of four molecular descriptors: polarizability, sum of positive atom charges, sum of proton acceptor descriptors and dipole moment. The developed models have good descriptive and predictive ability and clear physicochemical interpretation.

References

  1. Mironov, A. N., & Bunatyan, N. D. (2012). Guidelines for conducting pre-clinical trials of medicinal products. Part one. Moscow: Grif and K, 237–238. ISBN 978-5-9901447-1-2

  2. Makhaeva, G. F., Radchenko, E. V., Baskin, I. I., Palyulin, V. A., Richardson, R. J., Zefirov, N. S.(2012). Combined QSAR studies of inhibitor properties of O-phosphorylated oximes toward serine esterases involved in neurotoxicity, drug metabolism and Alzheimer's disease. SAR QSAR Environ. Res., 23(7-8), 627–647. DOI

  3. Mager, P. P. (1982). Structure neurotoxicity relationships applied to organophosphorus pesticides. Toxicol. Lett., 11(1-2), 67–71. DOI

  4. Sanz, P., Flores, I.C., Soriano, T., Repetto, G.,Repetto, M. (1995). In vitro quantitative structure-activity relationship assessment of pyrrole adducts production by γ-diketone-forming neurotoxic solvents. Toxicology in Vitro, 9(5), 783–787. DOI

  5. Lapenna, S., Fuart-Gatnik, M. and Worth A. (2010). Review of QSAR Models and Software Tools for predicting Acute and Chronic Systemic Toxicity. EUR – Scientific and Technical Research series. DOI

  6. Frantik, E., Hornychova, M. and Horvath, M. (1994). Relative Acute Neurotoxicity of Solvents: Isoeffective Air Concentration of 48 Compounds Evaluated in Rats and Mice. Environ. Res., 66(2), 173-185 DOI

  7. Cronin, M. T. D. (1996). Quantitative structure-activity relationship (QSAR) analysis of the acute sublethal neurotoxicity of solvents. Toxicology in Vitro, 10(2), 103 – 110. DOI

  8. Estrada, E., Molina, E. and Uriarte, E. (2001). Quantitative Structure-Toxicity Relationships Using Tops-Mode. 2. Neurotoxicity of a Non-Congeneric Series of Solvents. SAR QSAR Environ. Res., 12(5), 445-459. DOI

  9. Moser, V. C. (2011). Functional Assays for Neurotoxicity Testing. Toxicol. Pathol., 39(1), 36–45. DOI

  10. Raevsky, O. A., Grigor’ev, V. Yu. , Trepalin, S. V. (1999). HYBOT (Hydrogen Bond Thermodynamics). Russian State Patent Department (registration number № 990090).

  11. Raevskii, O. A., Trepalina, E. P. & Trepalin, S. V. (2000). Slipper: A new program for calculating solubility, lipophilicity, and liposome penetrability. Pharm. Chem. J., 34(1), 33-36. DOI

  12. Osipov, O. A., Minkin, V. I., & Garnovskii, A. D. (1971). Handbook of Dipole Moments. Vysshaya Shkola, Moscow, 180.
  13. Forsythe, J., Malcolm, M., & Mowler, C. Computer Methods of Mathematical Calculations [Russian translation], Mir, Moscow (1980). Google Scholar, 210.

  14. Program RRforest. Retrieved May 05, 2018 from http://www.stat.berkeley.edu/~breiman/RandomForests/reg_examples/RFR.f

  15. Support Vector Machine aplication written in fortran 90. Retrieved May 05, 2018 from https://github.com/jbcolme/fortran-ls-svm

  16. OECD principles for the validation, for regulatory purposes, of (quantitative) structure-activity relationship models. Retrieved May 05, 2018 from http://www.oecd.org/dataoecd/33/37/37849783.pdf

  17. Tropsha, A., Gramatica, P. and Gombar, V. K. (2003). The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR Comb. Sci., 21(1), 69–77. DOI

  18. Netzeva, T. I., Pavan, M., and Worth, A. P. (2008). Review of (Quantitative) Structure–Activity Relationships for Acute Aquatic Toxicity. QSAR Comb. Sci., 27(1), 77-90. DOI

  19. Escher, B. I., and Hermens, J. L. M. (2002). Modes of Action in Ecotoxicology:  Their Role in Body Burdens, Species Sensitivity, QSARs, and Mixture Effects. Environ. Sci. Technol., 36(20), 4201-4217. DOI

  20. Devillers, J. and Devillers, H. (2009). Prediction of acute mammalian toxicity from QSARs and interspecies correlations. SAR QSAR Environ. Res., 20(5-6), 467-500. DOI

  21. Raevskii, O. A. and Grigor’ev, V. Yu. (1999). Lipophilicity of organic compounds: a quantitative description based on the concepts of polarizability and acceptor ability to hydrogen bond formation. Pharm. Chem. J., 33(5), 274-277. DOI

  22. Markizova, N. F., Grebenyuk, A. N., Bašarin, V. A., & Bonitenko, E. J. (2004). Spirty: Toksikologia dlja vračej. Voenno-Medicinskaja Akademie, Sankt-Peterburg.

Published
2018-07-09
Section
Experimental Research