Evolution of methods for assessing the motor function of laboratory rodents - neurodegenerative diseases models

  • M.M. Chicheva Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia
  • E.V. Vikhareva Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia
  • A.V. Maltsev Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia
  • A.A. Ustyugov Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1 Severny proezd, Moscow region, Chernogolovka, 142432 Russia
Keywords: neurodegeneration, gait, animal models, motor function

Abstract

This review contains information about different laboratorian rodent′s gait analysis systems. These methods are useful for the assessment of motor function in neurodegenerative models. The following aspects have been considered: ink traces technique, treadmills equipment, and modern gait analysis systems like TreadScan and CatWalk, which allows estimating a set of animals gait parameters. For each technique a detailed description and examples of its use for estimating gait parameters in neurodegenerative diseases are given.

References

  1. Arendt, T., Mosch, B., Morawski, M. (2009). Neuronal aneuploidy in health and disease: a cytomic approach to understand the molecular individuality of neurons. Int J Mol Sci, 10(4), 1609-1627. DOI

  2. Kline, R. A., Kaifer, K. A., Osman, E. Y., Carella, F., Tiberi, A., Ross, J., Pennetta, G., Lorson, C. L., Murray, L. M. (2017). Comparison of independent screens on differentially vulnerable motor neurons reveals alpha-synuclein as a common modifier in motor neuron diseases. PLoS Genet, 13(3), e1006680. DOI

  3. Gonzalez-Gomez, I., Mononen, I., Heisterkamp, N., Groffen, J., Kaartinen, V. (1998). Progressive neurodegeneration in aspartylglycosaminuria mice. Am J Pathol, 153(4), 1293-1300. DOI

  4. Messer, A., Strominger, N. L., Mazurkiewicz, J. E. (1987). Histopathology of the late-onset motor neuron degeneration (Mnd) mutant in the mouse. J Neurogenet, 4(4), 201-213.

  5. Yin, Z., Valkenburg, F., Hornix, B. E., Mantingh-Otter, I., Zhou, X., Mari, M., Reggiori, F., Van Dam, D., Eggen, B. J. L., De Deyn, P. P., Boddeke, E. (2017). Progressive Motor Deficit is Mediated by the Denervation of Neuromuscular Junctions and Axonal Degeneration in Transgenic Mice Expressing Mutant (P301S) Tau Protein. J Alzheimers Dis, 60(s1), S41-S57. DOI

  6. Shelkovnikova, T. A., Peters, O. M., Deykin, A. V., Connor-Robson, N., Robinson, H., Ustyugov, A. A., Bachurin, S. O., Ermolkevich, T. G., Goldman, I. L., Sadchikova, E. R., Kovrazhkina, E. A., Skvortsova, V. I., Ling, S. C., Da Cruz, S., Parone, P. A., Buchman, V. L., Ninkina, N. N. (2013). Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem, 288(35), 25266-25274. DOI

  7. D'Hooge, R., Hartmann, D., Manil, J., Colin, F., Gieselmann, V., De Deyn, P. P. (1999). Neuromotor alterations and cerebellar deficits in aged arylsulfatase A-deficient transgenic mice. Neurosci Lett, 273(2), 93-96.

  8. Fernagut, P. O., Diguet, E., Labattu, B., Tison, F. (2002). A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J Neurosci Methods, 113(2), 123-130.

  9. de Medinaceli, L., Freed, W. J., Wyatt, R. J. (1982). An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Experimental neurology, 77(3), 634-643.

  10. Wilson, J. M., Petrik, M. S., Moghadasian, M. H., Shaw, C. A. (2005). Examining the interaction of apo E and neurotoxicity on a murine model of ALS-PDC. Can J Physiol Pharmacol, 83(2), 131-141. DOI

  11. Takayanagi, N., Beppu, H., Mizutani, K., Tomita, Y., Nagao, S., Suzuki, S., Orand, A., Takahashi, H., Sonoda, S. (2013). Pelvic axis-based gait analysis for ataxic mice. J Neurosci Methods, 219(1), 162-168. DOI

  12. Guillot, T. S., Asress, S. A., Richardson, J. R., Glass, J. D., Miller, G. W. (2008). Treadmill gait analysis does not detect motor deficits in animal models of Parkinson's disease or amyotrophic lateral sclerosis. J Mot Behav, 40(6), 568-577. DOI

  13. Amende, I., Kale, A., McCue, S., Glazier, S., Morgan, J. P., Hampton, T. G. (2005). Gait dynamics in mouse models of Parkinson's disease and Huntington's disease. J Neuroeng Rehabil, 2, 20. DOI

  14. Vinsant, S., Mansfield, C., Jimenez-Moreno, R., Del Gaizo Moore, V., Yoshikawa, M., Hampton, T. G., Prevette, D., Caress, J., Oppenheim, R. W., Milligan, C. (2013). Characterization of early pathogenesis in the SOD1(G93A) mouse model of ALS: part II, results and discussion. Brain Behav, 3(4), 431-457. DOI

  15. Beare, J. E., Morehouse, J. R., DeVries, W. H., Enzmann, G. U., Burke, D. A., Magnuson, D. S., Whittemore, S. R. (2009). Gait analysis in normal and spinal contused mice using the TreadScan system. J Neurotrauma, 26(11), 2045-2056. DOI

  16. Vrinten, D. H. Hamers, F. F. (2003). 'CatWalk' automated quantitative gait analysis as a novel method to assess mechanical allodynia in the rat; a comparison with von Frey testing. Pain, 102(1-2), 203-209.

  17. Jakeman, L. B., Chen, Y., Lucin, K. M., McTigue, D. M. (2006). Mice lacking L1 cell adhesion molecule have deficits in locomotion and exhibit enhanced corticospinal tract sprouting following mild contusion injury to the spinal cord. Eur J Neurosci, 23(8), 1997-2011. DOI

  18. Van Meeteren, N. L., Eggers, R., Lankhorst, A. J., Gispen, W. H., Hamers, F. P. (2003). Locomotor recovery after spinal cord contusion injury in rats is improved by spontaneous exercise. J Neurotrauma, 20(10), 1029-1037. DOI

  19. Abu-Ghefreh, A. A. Masocha, W. (2010). Enhancement of antinociception by coadministration of minocycline and a non-steroidal anti-inflammatory drug indomethacin in naive mice and murine models of LPS-induced thermal hyperalgesia and monoarthritis. BMC Musculoskelet Disord, 11, 276. DOI

  20. Ferreira-Gomes, J., Adaes, S., Castro-Lopes, J. M. (2008). Assessment of movement-evoked pain in osteoarthritis by the knee-bend and CatWalk tests: a clinically relevant study. J Pain, 9(10), 945-954. DOI

  21. Vandeputte, C., Taymans, J. M., Casteels, C., Coun, F., Ni, Y., Van Laere, K., Baekelandt, V. (2010). Automated quantitative gait analysis in animal models of movement disorders. BMC Neurosci, 11, 92. DOI

  22. Casteels, C., Vandeputte, C., Rangarajan, J. R., Dresselaers, T., Riess, O., Bormans, G., Maes, F., Himmelreich, U., Nguyen, H., Van Laere, K. (2011). Metabolic and type 1 cannabinoid receptor imaging of a transgenic rat model in the early phase of Huntington disease. Exp Neurol, 229(2), 440-449. DOI

  23. Chiang, M. C., Chen, C. M., Lee, M. R., Chen, H. W., Chen, H. M., Wu, Y. S., Hung, C. H., Kang, J. J., Chang, C. P., Chang, C., Wu, Y. R., Tsai, Y. S., Chern, Y. (2010). Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Hum Mol Genet, 19(20), 4043-4058. DOI

  24. Barber, S. C. Shaw, P. J. (2010). Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med, 48(5), 629-641. DOI

  25. Gerber, Y. N., Sabourin, J. C., Rabano, M., Vivanco, M., Perrin, F. E. (2012). Early functional deficit and microglial disturbances in a mouse model of amyotrophic lateral sclerosis. PLoS One, 7(4), e36000. DOI

  26. Mead, R. J., Bennett, E. J., Kennerley, A. J., Sharp, P., Sunyach, C., Kasher, P., Berwick, J., Pettmann, B., Battaglia, G., Azzouz, M., Grierson, A., Shaw, P. J. (2011). Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). PLoS One, 6(8), e23244. DOI

  27. Nanou, A., Higginbottom, A., Valori, C. F., Wyles, M., Ning, K., Shaw, P., Azzouz, M. (2013). Viral delivery of antioxidant genes as a therapeutic strategy in experimental models of amyotrophic lateral sclerosis. Mol Ther, 21(8), 1486-1496. DOI

  28. Eleftheriadou, I., Manolaras, I., Irvine, E. E., Dieringer, M., Trabalza, A., Mazarakis, N. D. (2016). alphaCAR IGF-1 vector targeting of motor neurons ameliorates disease progression in ALS mice. Ann Clin Transl Neurol, 3(10), 752-768. DOI

  29. Lee, J. K., Shin, J. H., Hwang, S. G., Gwag, B. J., McKee, A. C., Lee, J., Kowall, N. W., Ryu, H., Lim, D. S., Choi, E. J. (2013). MST1 functions as a key modulator of neurodegeneration in a mouse model of ALS. Proc Natl Acad Sci U S A, 110(29), 12066-12071. DOI

  30. Mead, R. J., Higginbottom, A., Allen, S. P., Kirby, J., Bennett, E., Barber, S. C., Heath, P. R., Coluccia, A., Patel, N., Gardner, I., Brancale, A., Grierson, A. J., Shaw, P. J. (2013). S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis. Free Radic Biol Med, 61, 438-452. DOI

  31. Audouard, E., Schakman, O., Rene, F., Huettl, R. E., Huber, A. B., Loeffler, J. P., Gailly, P., Clotman, F. (2012). The Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions. PLoS One, 7(12), e50509. DOI

  32. Vergouts, M., Marinangeli, C., Ingelbrecht, C., Genard, G., Schakman, O., Sternotte, A., Calas, A. G., Hermans, E. (2015). Early ALS-type gait abnormalities in AMP-dependent protein kinase-deficient mice suggest a role for this metabolic sensor in early stages of the disease. Metab Brain Dis, 30(6), 1369-1377. DOI

  33. Scekic-Zahirovic, J., Oussini, H. E., Mersmann, S., Drenner, K., Wagner, M., Sun, Y., Allmeroth, K., Dieterle, S., Sinniger, J., Dirrig-Grosch, S., Rene, F., Dormann, D., Haass, C., Ludolph, A. C., Lagier-Tourenne, C., Storkebaum, E., Dupuis, L. (2017). Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis. Acta Neuropathol, 133(6), 887-906. DOI

  34. Scekic-Zahirovic, J., Sendscheid, O., El Oussini, H., Jambeau, M., Sun, Y., Mersmann, S., Wagner, M., Dieterle, S., Sinniger, J., Dirrig-Grosch, S., Drenner, K., Birling, M. C., Qiu, J., Zhou, Y., Li, H., Fu, X. D., Rouaux, C., Shelkovnikova, T., Witting, A., Ludolph, A. C., Kiefer, F., Storkebaum, E., Lagier-Tourenne, C., Dupuis, L. (2016). Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J, 35(10), 1077-1097. DOI

  35. Chedly, J., Soares, S., Montembault, A., Von Boxberg, Y., Veron-Ravaille, M., Mouffle, C., Benassy, M.-N., Taxi, J., David, L., Nothias, F. (2017). Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials, 138, 91-107.

Published
2018-10-01