Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitations

  • D.A. Filimonov Institute of Biomedical Chemistry, Moscow, Russia
  • D.S. Druzhilovskiy Institute of Biomedical Chemistry, Moscow, Russia
  • A.A. Lagunin Institute of Biomedical ChemistryInstitute of Biomedical Chemistry, Moscow, Russia, Pirogov Russian National Research Medical University, Moscow, Russia
  • T.A. Gloriozova Institute of Biomedical Chemistry, Moscow, Russia
  • A.V. Rudik Institute of Biomedical Chemistry, Moscow, Russia
  • A.V. Dmitriev Institute of Biomedical Chemistry, Moscow, Russia
  • P.V. Pogodin Institute of Biomedical Chemistry, Moscow, Russia
  • V.V. Poroikov Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
Keywords: analysis of structure-activity relationships; biological activity spectra; computer-aided prediction; PASS; accuracy; predictivity; web-resource Way2Drug

Abstract

An essential characteristic of chemical compounds is their biological activity since its presence can become the basis for the use of the substance for therapeutic purposes, or, on the contrary, limit the possibilities of its practical application due to the manifestation of side action and toxic effects. Computer assessment of the biological activity spectra makes it possible to determine the most promising directions for the study of the pharmacological action of particular substances, and to filter out potentially dangerous molecules at the early stages of research. For more than 25 years, we have been developing and improving the computer program PASS (Prediction of Activity Spectra for Substances), designed to predict the biological activity spectrum of substance based on the structural formula of its molecules. The prediction is carried out by the analysis of structure-activity relationships for the training set, which currently contains information on structures and known biological activities for more than one million molecules. The structure of the organic compound is represented in PASS using Multilevel Neighborhoods of Atoms descriptors; the activity prediction for new compounds is performed by the naive Bayes classifier and the structure-activity relationships determined by the analysis of the training set. We have created and improved both local versions of the PASS program and freely available web resources based on PASS (http://www.way2drug.com). They predict several thousand biological activities (pharmacological effects, molecular mechanisms of action, specific toxicity and adverse effects, interaction with the unwanted targets, metabolism and action on molecular transport), cytotoxicity for tumor and non-tumor cell lines, carcinogenicity, induced changes of gene expression profiles, metabolic sites of the major enzymes of the first and second phases of xenobiotics biotransformation, and belonging to substrates and/or metabolites of metabolic enzymes.

The web resource Way2Drug is used by over 19 000 researchers from more than 100 countries around the world, which allowed them to obtain over 600 000 predictions and publish about 500 papers describing the obtained results. The analysis of the published works shows that in some cases the interpretation of the prediction results presented by the authors of these publications requires an adjustment. In this work, we provide the theoretical basis and consider, on particular examples, the opportunities and limitations of computer-aided prediction of biological activity spectra.

References

  1. Barenboim, G.M. & Malenkov, A.G. (1986) Biologically active substances. New techniques of discovery. Moscow: Nauka (Rus).

  2. Czerepak, E. & Ryser, S. (2008). Drug approvals and failures: implications for alliances. Nature Reviews Drug Discovery, 7, 197198. DOI

  3. ChemNavigator, Retrieved March 24, 2018, from http://www.chemnavigator.com/

  4. CAS. Retrieved March 24, 2018, from http://www.cas.org/

  5. SAVI. Retrieved March 24, 2018, from https://cactus.nci.nih.gov/download/savi_download/

  6. Ruddigkeit, L., Blum, L. C. & Reymond, J.-L. (2013). Visualization and virtual screening of the chemical universe database GDB-17. Journal of Chemical Information and Modeling, 53(1), 56-65. DOI

  7. Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., Karlsson, A., Al-Lazikani, B., Hersey, A., Oprea, T. I. & Overington, J. P. (2017). A comprehensive map of molecular drug' target=s. Nature Reviews Drug Discovery, 16(1), 19-34. DOI

  8. Li, Y. H., Yu, C. Y., Li, X. X., Zhang, P., Tang ,J., Yang, Q., Fu, T., Zhang, X., Cui, X., Tu, G., Zhang, Y., Li, S., Yang, F., Sun, Q., Qin, C., Zeng, X., Chen, Z., Chen, Y. Z. & Zhu, F. (2018). Therapeutic' target= database update 2018: enriched resource for facilitating bench-to-clinic research of' target=ed therapeutics. Nucleic Acids Research, 46(D1), D1121-D1127. DOI

  9. Chisholm-Burns, M. A., Schwinghammer, T. L., Wells, B. G., Malone, P. M., DiPiro, J. T., & Kolesar, J. M. (2015). Pharmacotherapy Principles and Practice, Fourth Edition. NY: McGraw Hill Professional.

  10. Lipinski, C. & Hopkins, A. (2004). Navigating chemical space for biology and medicine. Nature, 432, 855-861. DOI

  11. Ivanov, A.S., Poroikov, V.V., & Archakov, A.I. (2003) Bioinformatics: way from genome to drug in silico. Bulletin of RSMU, 4(30), 19-23 (Rus).

  12. Jorgensen, W. L. (2004). The many roles of computation in drug discovery. Science, 303(5665), 1813-1818. DOI

  13. Chen, Y. C. (2015). Beware of docking! Trends in Pharmacological Science, 36(2), 78-95. DOI

  14. Luo, H., Zhang, P., Cao, X. H., Du, D., Ye, H., Huang, H., Li, C., Qin, S., Wan, C., Shi, L., He, L. & Yang, L. (2016). DPDR-CPI, a server that predicts drug positioning and drug repositioning via chemical-protein interactome. Scientific Reports, 6, 35996. DOI

  15. Martin, Y. C., Kofron, J. L. & Traphagen, L. M. (2002). Do structurally similar molecules have similar biological activity? Journal of Medicinal Chemistry, 45(19), 4350-4358. DOI

  16. Bender, A. (2010). How similar are those molecules after all? Use two descriptors and you will have three different answers. Expert Opinion on Drug Discovery, 5(12), 1141-1151. DOI

  17. PubChem. Retrieved March 24, 2018, from https://pubchem.ncbi.nlm.nih.gov/

  18. ChEMBL. Retrieved March 24, 2018, from https://www.ebi.ac.uk/chembl/

  19. DrugBank. Retrieved March 24, 2018, from https://www.drugbank.ca/

  20. ChemProt. Retrieved March 24, 2018, from http://potentia.cbs.dtu.dk/ChemProt/

  21. SEA. Retrieved March 24, 2018, from http://sea.bkslab.org/

  22. SuperPred. Retrieved March 24, 2018, from http://prediction.charite.de/

  23. SwissTargetPrediction. Retrieved March 24, 2018, from http://www.swisstargetprediction.ch/

  24. TarPred. Retrieved March 24, 2018, from http://202.127.19.75:5555/

  25. TargetHunter. Retrieved March 24, 2018, from http://www.cbligand.org/TargetHunter/

  26. Mervin, L. H., Afzal, A. M., Drakakis, G., Lewis, R., Engkvist, O. & Bender, A. (2015).' target= prediction utilising negative bioactivity data covering large chemical space. Journal of Cheminformatics, 7, 51. DOI

  27. Burov, Yu.V., Poroikov, V.V., Korolchenko, L.V. (1990) National system for registration and biological testing of chemical compounds: facilities for new drugs search. Bulletin of National Center for Biologically Active Compounds, 1, 4-25 (Rus).

  28. Poroikov, V.V., Filimonov, D.A. & Boudunova, A.P. (1993) Comparison of the Results of Prediction of the Spectra of Biological Activity of Chemical Compounds by Experts and the PASS System. Automatic Documentation and Mathematical Linguistics, 27 (3), 40-43.

  29. Filimonov, D.A., Poroikov V.V., Karaicheva, E.I., Kazaryan, R.K., Boudunova, A.P., Mikhailovskiy, E.M., Rudnitskih, A.V., Goncharenko, L.V. & Burov, Yu.V. (1995) Computer-Aided Prediction of Biological Activity Spectra of Chemical Substances on the Basis of Their Structural Formulae: Computerized System PASS. Experimental and Clinical Pharmacology, 58(2), 56-62 (Rus).

  30. Filimonov, D. A. & Poroikov, V. V. (1996). PASS: computerized prediction of biological activity spectra for chemical substances. In Bioactive Compound Design: Possibilities for Industrial Use (pp. 47-56). Oxford, UK: BIOS Scientific Publishers.

  31. Poroikov, V.V. (1999) Computer-aided prediction of biological activity for chemical substances: possibilities and limitations. Chemistry in Russia, 2, 8-12 (Rus).

  32. Lagunin, A., Stepanchikova, A., Filimonov, D. & Poroikov, V. (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 16(8), 747-748. DOI

  33. Poroikov, V. V., Filimonov, D. A., Ihlenfeldt, W.-D., Gloriozova, T. A., Lagunin, A. A., Borodina, Yu. V., Stepanchikova, A. V. & Nicklaus, M. C. (2003). PASS Biological Activity Spectrum Predictions in the Enhanced Open NCI Database Browser. Journal of Chemical Information and Computer Sciences, 43(1) 228-236. DOI

  34. Filimonov, D.A. & Poroikov, V.V. (2006) Prediction of biological activity spectra for organic compounds. Russian Chemical Journal, 50 (2), 66-75 (Rus)

  35. Filimonov, D. A. & Poroikov V. V. (2008). Probabilistic approach in activity prediction. In A. Varnek & A. Tropsha (Eds.) Chemoinformatics Approaches to Virtual Screening (pp. 182-216). Cambridge, UK: RSC Publishing.

  36. Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskiy, D. S., Pogodin, P. V. & Poroikov V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444-457. DOI

  37. Druzhilovskiy, D. S., Rudik, A. V., Filimonov, D. A., Gloriozova, T. A., Lagunin, A. A., Dmitriev, A. V., Pogodin, P. V., Dubovskaja, V. I., Ivanov, S. M., Tarasova, O. A., Bezhentsev, V. M., Murtazalieva, K. A., Semin, M. I., Maiorov, I. S., Gaur, A. S., Sastry, G. N. & Poroikov, V. V. (2017). Computational platform Way2Drug: from the prediction of biological activity to drug repurposing. Russian Chemical Bulletin, International Edition, 66(10), 1832-1841. DOI

  38. Poroikov, V. V., Filimonov, D. A., Borodina, Yu. V., Lagunin, A. A. & Kos, A. (2000). Robustness of biological activity spectra predicting by computer program PASS for non-congeneric sets of chemical compounds. Journal of Chemical Information and Computer Sciences, 40(6), 1349-1355. DOI

  39. Filimonov, D., Poroikov, V., Borodina, Yu. & Gloriozova T. (1999). Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. Journal of Chemical Information and Computer Sciences, 39(4), 666-670. DOI

  40. Holtje, H.-D., Folkers, G., Mannhold, R., Kubinyi, H. & Timmerman, H. (2008) Molecular modeling: Basic principles and applications. Weinheim: Wiley.

  41. Dalby, A., Nourse, G. J., Hounshell, W. D., Gushurst, A. K. I., Grier, D. L., Leland, B. A. & Laufer, J. (1992). Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. Journal of Chemical Information and Computer Science, 32(3), 244-255. DOI

  42. Fourches, D., Muratov, E. & Tropsha A. (2010). Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. Journal of Chemical Information and Modeling, 50(7), 1189-1204. DOI

  43. Fourches, D., Muratov, E. & Tropsha A. (2015). Curation of chemogenomics data. Nature Chemical Biology, 11(8), 535. DOI

  44. Fourches, D., Muratov, E. & Tropsha A. (2016). Trust, But Verify II: A Practical Guide to Chemogenomics Data Curation. Journal of Chemical Information and Modeling, 56(7), 1243-1252. DOI

  45. Townsend, J. A., Glen, R. C. & Mussa, H. Y. (2012). Note on naive Bayes based on binary descriptors in cheminformatics. Journal of Chemical Information and Modeling, 52(10), 2494-2500. DOI

  46. Mussa, H. Y., Mitchell, J. B. O. & Glen, R. C. (2013). Full УLaplacianisedФ posterior Naive Bayesian algorithm. Journal of Cheminformatics, 5, 37. DOI

  47. Mussa, H. Y., Marcus, D., Mitchell, J. B. & Glen, R. C. (2015). Verifying the fully "Laplacianised" posterior Naive Bayesian approach and more. Journal of Cheminformatics, 7, 27. DOI

  48. Geronikaki, A., Druzhilovsky, D., Zakharov, A. & Poroikov, V. (2008). Computer-aided predictions for medicinal chemistry via Internet. SAR and QSAR in Environmental Research, 19(1-2), 27-38. DOI

  49. Druzhilovskiy, D.S., Rudik, A.V., Filimonov, D.A., Lagunin, A.A., Gloriozova, T.A. & Poroikov V.V. (2016) Online resources for the prediction of biological activity of organic compounds. Russian Chemical Bulletin, International Edition, 65 (2), 384-393.

  50. Murtazalieva, K. A., Druzhilovskiy, D. S., Goel, R. K., Sastry, G. N. & Poroikov V. V. (2017). How good are publicly available web services that predict bioactivity profiles for drug repurposing? SAR and QSAR in Environmental Research, 28(10), 843-862. DOI

  51. Integrity. Retrieved March 24, 2018, from https://integrity.thomson-pharma.com/

  52. SleepDisorders. Retrieved March 24, 2018, from http://sleepdisorders.about.com/od/sleepdisorderstreatment/a/What-Is-Topamax.htm

  53. Bandini, F., Arena, E. & Mauro, G. (2012). Pre-orgasmic sexual headache responsive to topiramate: a case report. Cephalalgia, 32(10), 797-798. DOI

  54. Geronikaki, A., Babaev, E., Dearden, J., Dehaen, W., Filimonov, D., Galaeva, I., Krajneva, V., Lagunin, A., Macaev, F., Molodavkin, G., Poroikov, V., Saloutin, V., Stepanchikova, A. & Voronina, T. (2004). Design of new anxiolytics: from computer prediction to synthesis and biological evaluation. Bioorganic & Medicinal Chemistry, 12(24), 6559-6568. DOI

  55. B-Rao, C., Kulkarni-Almeida, A., Katkar, K. V., Khanna, S., Ghosh, U., Keche, A., Shah, P., Srivastava, A., Korde, V., Nemmani, K. V., Deshmukh, N. J., Dixit, A., Brahma, M. K., Bahirat, U., Doshi, L., Sharma, R. & Sivaramakrishnan H. (2012). Identification of novel isocytosine derivatives as xanthine oxidase inhibitors from a set of virtual screening hits. Bioorganic & Medicinal Chemistry, 20(9), 2930-2839. DOI

  56. Folmer, R. H. A. (2016). Integrating biophysics with HTS-driven drug discovery projects. Drug Discovery Today, 21(3), 491-498. DOI

  57. Babaev, E.V. (2009) Combinatorial chemistry in high school: ten-year experience of scientific, educational and organizational projects. Russian chemical journal, 53(5), 140-152 (Rus).

  58. Lagunin, A. A., Gomazkov, O. A., Filimonov, D. A., Gureeva, T. A., Dilakyan, E. A., Kugaevskaya, E. V., Elisseeva, Yu. E., Solovyeva, N. I. & Poroikov, V. V. Computer-aided selection of potential antihypertensive compounds with dual mechanisms of action. (2003). Journal of Medicinal Chemistry, 46(15), 3326-3332. DOI

  59. Geronikaki, A. A., Lagunin, A. A., Hadjipavlou-Litina, D. I., Elefteriou, P. T., Filimonov, D. A., Poroikov, V. V., Alam, I. & Saxena A.K. (2008). Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. Journal of Medicinal Chemistry, 51(6), 1601-1609. DOI

  60. Gillbro, J. M., Lundahl, M., Westman, M., Baral, R., Al-Bader, T. & Mavon A. (2015). Structural activity relationship analysis (SAR) and in vitro testing reveal the anti-ageing potential activity of acetyl aspartic acid. International Journal of Cosmetic Science, 37(S1), 15-20. DOI

  61. Kryzhanovskii, S.A., Salimov, R.M., Lagunin, A.A., Filimonov, D.A., Gloriozova, T.A. & Poroikov V.V. (2012) Nootropic action of some antihypertensive drugs: computer predicting and experimental testing. Pharmaceutical Chemistry Journal, 45 (10), 605-611.

  62. Gao, Y., OТCaoimh, R., Healy, L., Kerins, D. M., Eustace, J., Guyatt, G., Sammon, D. & Molloy, D. W. (2013). Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia. BMJ Open, 3, 1-8. http://doi.org/10.1136/bmjopen-2013-002881

  63. Cruz-Monteagudo, M., Medina-Franco, J. L., Perez-Castillo, Y., Nicolotti, O., Cordeiro, M. N. & Borges, F. (2014). Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discovery Today, 19(8), 1069-1080. DOI

  64. Bajorath, J. (2017). Representation and identification of activity cliffs. Expert Opinion on Drug Discovery, 12(9), 879-883. DOI

  65. Bates, D. O., Morris, J. C., Oltean, S. & Donaldson, L. F. (2017). Pharmacology of modulators of alternative splicing. Pharmacological Reviews, 69(1), 63-79. DOI

  66. Hopkins, A. L. (2007). Network pharmacology. Nature Biotechnology, 25(10), 1110-1111. DOI

  67. Poroikov, V. (2015). 20th EuroQSAR: Understanding Chemical-Biological Interactions. Molecular Informatics, 34(6-7), 340. DOI

  68. Kramer, C., Kalliokoski, T., Gedeck, P. & Vulpetti, A. (2012). The experimental uncertainty of heterogeneous public K(i) data. Journal of Medicinal Chemistry, 55(11), 51655173. DOI

  69. Williams, A. J., Ekins, S. & Tkachenko, V. (2012). Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discovery Today, 17(13-14), 685701. DOI

  70. Tarasova, O. A., Urusova, A. F., Filimonov, D. A., Nicklaus, M. C., Zakharov, A. V. & Poroikov, V. V. (2015). QSAR modeling using large-scale databases: case study for HIV-1 reverse transcriptase inhibitors. Journal of Chemical Information and Modeling, 55(7), 1388-1399. DOI

  71. Ivanov, S. M., Lagunin, A. A. & Poroikov, V. V. (2016). In silico assessment of adverse drug reactions and associated mechanisms. Drug Discovery Today, 21(1), 58-71. DOI

  72. Standardizer. Retrieved March 24, 2018, from https://chemaxon.com/products/chemical-structure-representation-toolkit

  73. Murthy, P. K., Suneetha, V., Armakovic, S., Armakovic, S. J., Suchetan, P. A., Giri, L. & Rao, R. S. (2018). Synthesis, characterization and computational study of the newly synthetized sulfonamide molecule. Journal of Molecular Structure, 1153, 212-229. DOI

  74. Costa, R. A., Oliveira, K. M. T., Costam E. V. & Pinheiro, M. L. B. (2017). Vibrational, structural and electronic properties investigation by DFT calculations and molecular docking studies with DNA topoisomerase II of strychnobrasiline type alkaloids: A theoretical approach for potentially bioactive molecules. Journal of Molecular Structure, 1145, 254-267. DOI

  75. Sultan, M. A., Almansour, A. I., Pillai, R. R., Kumar, R. S., Arumugam, N., Armakovic, S., Armakovic, S. J. & Soliman. S. M. (2017). Synthesis, theoretical studies and molecular docking of a novel chlorinated tetracyclic: (Z/E)-3-(1,8-dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl)acrylaldehyde. Journal of Molecular Structure, 1150, 358-365. DOI

  76. Riju, Aikkal (2016). Phytochemical analysis, carminative, enzyme inhibitor, and anticancer activities of beta-elemene. Retrieved March 24, 2018, from DOI

  77. PASS Online. Retrieved March 24, 2018, from http://www.way2drug.com/passonline/

  78. Pogodin, P. V., Lagunin, A. A., Filimonov, D. A. & Poroikov V. V. (2015). PASS targets: ligand-based multi-target computational system based on public data and naive Bayes approach. SAR and QSAR in Environmental Research, 26(10), 783-793. DOI

  79. PASS targets. Retrieved March 24, 2018, from http://www.way2drug.com/passtargets/

  80. Lagunin, A., Ivanov, S., Rudik, A., Filimonov, D. & Poroikov, V. (2013). DIGEP-Pred: web-service for in-silico prediction of drug-induced expression profiles based on structural formula. Bioinformatics, 29(16), 2062-2063. DOI

  81. DIGEP Pred. Retrieved March 24, 2018, from http://www.way2drug.com/ge/

  82. Konova, V., Lagunin, A., Pogodin, P., Kolotova, E., Shtil, A. & Poroikov V. (2015). Virtual screening of chemical compounds active against breast cancer cell lines based on cell cycle modeling, prediction of cytotoxicity and interaction with' target=s. SAR and QSAR in Environmental Research, 26(7-9), 595-604. DOI

  83. Lagunin, A. A., Dubovskaja, V. I., Rudik, A. V., Pogodin, P. V., Druzhilovskiy, D. S., Gloriozova, T. A., Filimonov, D. A., Sastry, G. N. & Poroikov, V. V. (2018). CLC-Pred: a freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLOS One, 13(1), e0191838. DOI

  84. PASS CLC Pred, Retrieved March 24, 2018, from http://www.way2drug.com/cell-line/

  85. Rudik, A. V., Dmitriev, A. V., Lagunin, A. A., Filimonov, D. A. & Poroikov V. V. (2014). Metabolism sites prediction based on xenobiotics structural formulae and PASS prediction algorithm. Journal of Chemical Information and Modeling, 54(2), 498-507. DOI

  86. SMP. Retrieved March 24, 2018, from http://www.way2drug.com/SMP/

  87. Rudik, A., Dmitriev, A., Lagunin, A., Filimonov, D. & Poroikov, V. (2015). SOMP: web-service for in silico prediction of sites of metabolism for drug-like compounds. Bioinformatics, 31(12), 2046-2048. DOI

  88. SOMP. Retrieved March 24, 2018, from http://www.way2drug.com/SOMP/

  89. Rudik, A. V., Dmitriev, A. V., Lagunin, A. A., Filimonov, D. A. & Poroikov, V. V. (2016). Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics. Journal of Cheminformatics, 8, 68. DOI

  90. RA, Reacting Atoms. Retrieved March 24, 2018, from http://www.way2drug.com/RA/

  91. Dmitriev, A., Rudik, A., Filimonov, D., Lagunin, A., Pogodin, P., Dubovskaja, V., Bezhentsev, V., Ivanov, S., Druzhilovsky, D., Tarasova, O. & Poroikov, V. (2017) Integral estimation of xenobioticsТ toxicity with regard to their metabolism in human organism. Pure and Applied Chemistry, 89(10), 1449-1458. DOI

  92. Rudik, A. V., Bezhentsev, V. M., Dmitriev, A. V., Druzhilovskiy, D. S., Lagunin, A. A., Filimonov, D. A. & Poroikov, V. V. (2017). MetaTox: Web Application for Predicting Structure and Toxicity of XenobioticsТ Metabolites. Journal of Chemical Information and Modeling, 57(4), 638642. DOI

  93. MetaTox. Retrieved March 24, 2018, from http://way2drug.com/mg/

  94. Ivanov, S. M., Lagunin, A. A., Rudik, A. V., Filimonov, D. A. & Poroikov, V. V. (2018). ADVER-Pred - web service for prediction of adverse effects of drugs. Journal of Chemical Information and Modeling, 58(1), 8-11. DOI

  95. ADVER-Pred. Retrieved March 24, 2018, from www.way2drug.com/adverpred.

  96. Lagunin, A., Rudik, A., Filimonov, D., Druzhilovsky, D. & Poroikov, V. (2018). ROSC-Pred: web-service for rodent organ-specific carcinogenicity prediction. Bioinformatics, 34(4), 710-712. DOI

  97. ROSC-Pred. Retrieved March 24, 2018, from http://www.way2drug.com/ROSC/

  98. KinScreen, Retrieved March 24, 2018, from http://www.way2drug.com/KinScreen/

  99. SAR Creator. Retrieved March 24, 2018, from http://www.way2drug.com/dr/substance.php/

  100. Filimonov, D. A., Zakharov, A. V., Lagunin, A. A. & Poroikov V. V. (2009). QNA based УStar TrackФ QSAR approach. SAR and QSAR in Environmental Research, 20(7-8), 679-709. DOI

  101. Lagunin, A., Zakharov, A., Filimonov, D. & Poroikov, V. (2011). QSAR modelling of rat acute toxicity on the basis of PASS Prediction. Molecular Informatics, 30(2-3), 241-250. DOI

  102. Kokurkina, G. V., Dutov, M. D., Shevelev, S. A., Popkov, S. V., Zakharov, A. V. & Poroikov V.V. (2011). Synthesis, antifungal activity and QSAR study of 2-arylhydroxynitroindoles. European Journal of Medicinal Chemistry, 46(9), 4374-4382. DOI

  103. Zakharov, A. V., Lagunin, A. A., Filimonov, D. A. & Poroikov, V. V. Quantitative prediction of antitarget interaction profiles for chemical compounds. Chemical Research in Toxicology, 2012, 25(11) 2378-2385. DOI

  104. Zakharov, A. V., Peach, M. L., Sitzmann, M. & Nicklaus, M. C. (2014). QSAR Modeling of imbalanced high-throughput screening data in PubChem. Journal of Chemical Information and Modeling, 54(3), 705-712. DOI

  105. Fedorova, E. V., Buryakina, A. V., Zakharov, A. V., Filimonov, D. A., Lagunin, A. A. & Poroikov V. V. (2014). Design, synthesis and pharmacological evaluation of novel vanadium-containing complexes as antidiabetic agents. PLOS One, 9(7), e100386. DOI

  106. Hadjikakou, S. K., Ozturka, I. I., Banti, C. N., Kourkoumelis, N. & Hadjiliadis, N. (2015). Recent advances on antimony (III/V) compounds with potential activity against tumor cells. Journal of Inorganic Biochemistry, 153, 293-305. DOI

  107. Ajeet, Verma, M., Rani, S. & Kumar, A. (2016). Antitarget interaction, acute toxicity and protein binding studies of quinazolinedione sulphonamides as GABA1 antagonists. Indian Journal of Pharmaceutical Sciences, 78(1), 4853.

  108. Unnissa, S. H. & Rajan, D. (2016). Drug design, development and biological screening of pyridazine derivatives. Journal of Chemical and Pharmaceutical Research, 8(8), 999-1004. Retrieved March 24, 2018, from http://www.jocpr.com/articles/drug-design-development-and-biological-screening-of-pyridazine-derivatives.pdf

  109. Mansouri, K., Abdelaziz, A., Rybacka, A., Roncaglioni, A., Tropsha, A., Varnek, A., Zakharov, A., Worth, A., Richard, A. M., Grulke, C. M., Trisciuzzi, D., Fourches, D., Horvath, D., Benfenati, E., Muratov, E., Wedebye, E. B., Grisoni, F., Mangiatordi, G. F., Incisivom G. M., Hong, H., Ng, H. M., Tetko, I. V., Balabin, I., Kancherla, J., Shen, J., Burton, J., Nicklaus, M., Cassotti, M., Nikolov, N. G., Nicolotti, O., Andersson, P. L., Zang, Q., Politi, R., Beger, R. D., Todeschini, R., Huang, R., Farag, S., Rosenberg, S. A., Slavov, S., Hu, X. & Judson R. S. (2016). CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environmental Health Perspectives, 124(7), 1023-1033. DOI

  110. Ozturk, I. I., Yarar, S., Banti, C. N., Kourkoumelis, N., Chrysouli, M. P., Manoli, M., Tasiopoulos, A. J. & Hadjikakou, S. K. (2017). QSAR studies on antimony (III) halide complexes with N-substituted thiourea derivatives. Polyhedron, 123, 152-161. DOI
Published
2018-04-12
Section
Reviews