Prospects for the use of third generation sequencers for quantitative profiling of transcriptome

  • S.P. Radko Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • L.K. Kurbatov Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • K.G. Ptitsyn Adzhinomoto-Genetika,1 Dorozhny 1-st Road, Moscow, 117545 Russia
  • Y.Y. Kiseleva Russian Scientific Center of Roentgenoradiology, 86 Profsoyuznaya str., Moscow, 117997 Russia
  • E.A. Ponomarenko Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • A.V. Lisitsa Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • A.I. Archakov Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
Keywords: third generation sequencing; transcriptome; quantitative profiling


Transcriptome profiling is widely employed to analyze transcriptome dynamics when studying various biological processes at the cell and tissue levels. Unlike the second generation sequencers, which sequence relatively short fragments of nucleic acids, the third generation DNA/RNA sequencers developed by biotechnology companies “PacBio” and “Oxford Nanopore Technologies” allow one to sequence transcripts as single molecules and may be considered as potential molecular counters capable to measure the number of copies of each transcript with high throughput, sensitivity, and specificity. In the present review, the features of single molecule sequencing technologies offered by “PacBio” and “Oxford Nanopore Technologies” are considered alongside with their utility for transcriptome analysis, including the analysis of transcript isoforms. The prospects and limitations of the single molecule sequencing technology in application to quantitative transcriptome profiling are also discussed.


  1. Green, E. D., Watson, J. D., & Collins, F. S. (2015). Human Genome Project: Twenty-five years of big biology. Nature, 526(7571), 29-31. DOI

  2. Malone, J. H., & Oliver, B. (2011). Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biology, 9, 34. DOI

  3. Costa-Silva, J., Domingues, D., & Lopes, F. M. (2017). RNA-Seq differential expression analysis: An extended review and a software tool. PloS One, 12(12), e0190152. DOI

  4. Ambardar, S., Gupta, R., Trakroo, D., Lal, R., & Vakhlu, J. (2016). High Throughput Sequencing: An Overview of Sequencing Chemistry. Indian Journal of Microbiology, 56(4), 394-404. DOI

  5. Morey, M., Fernandez-Marmiesse, A., Castineiras, D., Fraga, J. M., Couce, M. L., & Cocho, J. A. (2013). A glimpse into past, present, and future DNA sequencing. Molecular Genetics and Metabolism, 110(1-2), 3-24. DOI

  6. Choi, S. C. (2016). On the study of microbial transcriptomes using second- and third-generation sequencing technologies. Journal of Microbiology, 54(8), 527-536. DOI

  7. Pillai, S., Gopalan, V., & Lam, A. K. (2017). Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas. Critical Reviews in Oncology/Hematology, 116, 58-67. DOI

  8. Schadt, E. E., Turner, S., & Kasarskis, A. (2010). A window into third-generation sequencing. Human Molecular Genetics, 19(R2), R227-240. DOI

  9. Ashton, P. M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., Mwaigwisya, S., Wain, J., & O'Grady, J. (2015). MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nature Biotechnology, 33(3), 296-300. DOI

  10. Laver, T., Harrison, J., O'Neill, P. A., Moore, K., Farbos, A., Paszkiewicz, K., & Studholme, D. J. (2015). Assessing the performance of the Oxford Nanopore Technologies MinION. Biomolecular Detection and Quantification, 3, 1-8. DOI

  11. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J., & Turner, S. (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323(5910), 133-138. DOI

  12. Korlach, J., Bjornson, K. P., Chaudhuri, B. P., Cicero, R. L., Flusberg, B. A., Gray, J. J., Holden, D., Saxena, R., Wegener, J., & Turner, S. W. (2010). Real-time DNA sequencing from single polymerase molecules. Methods in Enzymology, 472, 431-455. DOI

  13. Beckett, D., Kovaleva, E., & Schatz, P. J. (1999). A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Science, 8(4), 921-929. DOI

  14. Lundquist, P. M., Zhong, C. F., Zhao, P., Tomaney, A. B., Peluso, P. S., Dixon, J., Bettman, B., Lacroix, Y., Kwo, D. P., McCullough, E., Maxham, M., Hester, K., McNitt, P., Grey, D. M., Henriquez, C., Foquet, M., Turner, S. W., & Zaccarin, D. (2008). Parallel confocal detection of single molecules in real time. Optics Letters, 33(9), 1026-1028

  15. Travers, K. J., Chin, C. S., Rank, D. R., Eid, J. S., & Turner, S. W. (2010). A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Research, 38(15), e159. DOI

  16. An, D., Cao, H. X., Li, C., Humbeck, K., & Wang, W. (2018). Isoform Sequencing and State-of-Art Applications for Unravelling Complexity of Plant Transcriptomes. Genes, 9(1). DOI

  17., last accessed on December 1, 2018. DOI

  18. Nakano, K., Shiroma, A., Shimoji, M., Tamotsu, H., Ashimine, N., Ohki, S., Shinzato, M., Minami, M., Nakanishi, T., Teruya, K., Satou, K., & Hirano, T. (2017). Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area. Human Cell, 30(3), 149-161. DOI

  19. Mardis, E. R. (2013). Next-generation sequencing platforms. Annual Review of Analytical Chemistry, 6, 287-303. DOI

  20. Rhoads, A., & Au, K. F. (2015). PacBio Sequencing and Its Applications. Genomics, Proteomics & Bioinformatics, 13(5), 278-289. DOI

  21. Vilfan, I. D., Tsai, Y. C., Clark, T. A., Wegener, J., Dai, Q., Yi, C., Pan, T., Turner, S. W., & Korlach, J. (2013). Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. Journal of Nanobiotechnology, 11, 8. DOI

  22. Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13770-13773.

  23. Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E., & Deamer, D. W. (1999). Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophysical Journal, 77(6), 3227-3233. DOI

  24. Bayley, H. (2015). Nanopore sequencing: from imagination to reality. Clinical Chemistry, 61(1), 25-31. DOI

  25. Lieberman, K. R., Cherf, G. M., Doody, M. J., Olasagasti, F., Kolodji, Y., & Akeson, M. (2010). Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase. Journal of the American Chemical Society, 132(50), 17961-17972. DOI

  26. Cherf, G. M., Lieberman, K. R., Rashid, H., Lam, C. E., Karplus, K., & Akeson, M. (2012). Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nature Biotechnology, 30(4), 344-348. DOI

  27. Manrao, E. A., Derrington, I. M., Pavlenok, M., Niederweis, M., & Gundlach, J. H. (2011). Nucleotide discrimination with DNA immobilized in the MspA nanopore. PloS One, 6(10), e25723. DOI

  28. Manrao, E. A., Derrington, I. M., Laszlo, A. H., Langford, K. W., Hopper, M. K., Gillgren, N., Pavlenok, M., Niederweis, M., & Gundlach, J. H. (2012). Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nature Biotechnology, 30(4), 349-353. DOI

  29. Laszlo, A. H., Derrington, I. M., Ross, B. C., Brinkerhoff, H., Adey, A., Nova, I. C., Craig, J. M., Langford, K. W., Samson, J. M., Daza, R., Doering, K., Shendure, J., & Gundlach, J. H. (2014). Decoding long nanopore sequencing reads of natural DNA. Nature Biotechnology, 32(8), 829-833. DOI

  30. US Patent N 9447152 B2.

  31. US Patent N 9751915 B2.

  32. US Patent Application N 2015/0068904 A1.

  33. US Patent N 9758823 B2.

  34. US Patent Application N 2015/0065354 A1.

  35. US Patent Application N 2015/0152492 A1.

  36. US Patent Application N 2016/0162634 A1.

  37. US Patent Application N 2015/0014160 A1.

  38. US Patent N 10036065 B2.

  39. US Patent N 9651519 B2.

  40. Garalde, D. R., Snell, E. A., Jachimowicz, D., Sipos, B., Lloyd, J. H., Bruce, M., Pantic, N., Admassu, T., James, P., Warland, A., Jordan, M., Ciccone, J., Serra, S., Keenan, J., Martin, S., McNeill, L., Wallace, E. J., Jayasinghe, L., Wright, C., Blasco, J., Young, S., Brocklebank, D., Juul, S., Clarke, J., Heron, A. J., & Turner, D. J. (2018). Highly parallel direct RNA sequencing on an array of nanopores. Nature Methods, 15(3), 201-206. DOI

  41. Keller, M. W., Rambo-Martin, B. L., Wilson, M. M., Ridenour, C. A., Shepard, S. S., Stark, T. J., Neuhaus, E. B., Dugan, V. G., Wentworth, D. E., & Barnes, J. R. (2018). Direct RNA Sequencing of the Coding Complete Influenza A Virus Genome. Scientific Reports, 8(1), 14408. DOI

  42. Seki, M., Katsumata, E., Suzuki, A., Sereewattanawoot, S., Sakamoto, Y., Mizushima-Sugano, J., Sugano, S., Kohno, T., Frith, M. C., Tsuchihara, K., & Suzuki, Y. (2018). Evaluation and application of RNA-Seq by MinION. DNA Research, DOI

  43. Jenjaroenpun, P., Wongsurawat, T., Pereira, R., Patumcharoenpol, P., Ussery, D. W., Nielsen, J., & Nookaew, I. (2018). Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Research, 46(7), e38. DOI

  44. Moldovan, N., Tombacz, D., Szucs, A., Csabai, Z., Balazs, Z., Kis, E., Molnar, J., & Boldogkoi, Z. (2018). Third-generation Sequencing Reveals Extensive Polycistronism and Transcriptional Overlapping in a Baculovirus. Scientific Reports, 8(1), 8604. DOI

  45. Jain, M., Tyson, J. R., Loose, M., Ip, C. L. C., Eccles, D. A., O'Grady, J., Malla, S., Leggett, R. M., Wallerman, O., Jansen, H. J., Zalunin, V., Birney, E., Brown, B. L., Snutch, T. P., Olsen, H. E., Min, I. O. N. A., & Reference, C. (2017). MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry. F1000Research, 6, 760. DOI

  46. Butt, S. L., Taylor, T. L., Volkening, J. D., Dimitrov, K. M., Williams-Coplin, D., Lahmers, K. K., Miller, P. J., Rana, A. M., Suarez, D. L., Afonso, C. L., & Stanton, J. B. (2018). Rapid virulence prediction and identification of Newcastle disease virus genotypes using third-generation sequencing. Virology Journal, 15(1), 179. DOI

  47. Rames, E., & Macdonald, J. (2018). Evaluation of MinION nanopore sequencing for rapid enterovirus genotyping. Virus Research, 252, 8-12. DOI

  48. Li, C., Chng, K. R., Boey, E. J., Ng, A. H., Wilm, A., & Nagarajan, N. (2016). INC-Seq: accurate single molecule reads using nanopore sequencing. GigaScience, 5(1), 34. DOI

  49. Batovska, J., Lynch, S. E., Rodoni, B. C., Sawbridge, T. I., & Cogan, N. O. (2017). Metagenomic arbovirus detection using MinION nanopore sequencing. Journal of Virological Methods, 249, 79-84. DOI

  50. Au, K. F., Sebastiano, V., Afshar, P. T., Durruthy, J. D., Lee, L., Williams, B. A., van Bakel, H., Schadt, E. E., Reijo-Pera, R. A., Underwood, J. G., & Wong, W. H. (2013). Characterization of the human ESC transcriptome by hybrid sequencing. Proceedings of the National Academy of Sciences of the United States of America, 110(50), E4821-4830. DOI

  51. Steijger, T., Abril, J. F., Engstrom, P. G., Kokocinski, F., Consortium, R., Hubbard, T. J., Guigo, R., Harrow, J., & Bertone, P. (2013). Assessment of transcript reconstruction methods for RNA-seq. Nature Methods, 10(12), 1177-1184. DOI

  52. Au, K. F., Underwood, J. G., Lee, L., & Wong, W. H. (2012). Improving PacBio long read accuracy by short read alignment. PloS One, 7(10), e46679. DOI

  53. Hu, R., Sun, G., & Sun, X. (2016). LSCplus: a fast solution for improving long read accuracy by short read alignment. BMC Bioinformatics, 17(1), 451. DOI

  54. Salmela, L., & Rivals, E. (2014). LoRDEC: accurate and efficient long read error correction. Bioinformatics, 30(24), 3506-3514. DOI

  55. Hackl, T., Hedrich, R., Schultz, J., & Forster, F. (2014). proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics, 30(21), 3004-3011. DOI

  56. Chao, Q., Gao, Z. F., Zhang, D., Zhao, B. G., Dong, F. Q., Fu, C. X., Liu, L. J., & Wang, B. C. (2018). The developmental dynamics of the Populus stem transcriptome. Plant Biotechnology Journal. DOI

  57. Filichkin, S. A., Hamilton, M., Dharmawardhana, P. D., Singh, S. K., Sullivan, C., Ben-Hur, A., Reddy, A. S. N., & Jaiswal, P. (2018). Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching. Frontiers in Plant Science, 9, 5. DOI

  58. Piriyapongsa, J., Kaewprommal, P., Vaiwsri, S., Anuntakarun, S., Wirojsirasak, W., Punpee, P., Klomsa-Ard, P., Shaw, P. J., Pootakham, W., Yoocha, T., Sangsrakru, D., Tangphatsornruang, S., Tongsima, S., & Tragoonrung, S. (2018). Uncovering full-length transcript isoforms of sugarcane cultivar Khon Kaen 3 using single-molecule long-read sequencing. PeerJ, 6, e5818. DOI

  59. Zhang, G., Sun, M., Wang, J., Lei, M., Li, C., Zhao, D., Huang, J., Li, W., Li, S., Li, J., Yang, J., Luo, Y., Hu, S., & Zhang, B. (2018). PacBio full-length cDNA sequencing integrated with RNA-seq reads drastically improves the discovery of splicing transcripts in rice. The Plant Journal, DOI

  60. Zhu, J., Wang, X., Xu, Q., Zhao, S., Tai, Y., & Wei, C. (2018). Global dissection of alternative splicing uncovers transcriptional diversity in tissues and associates with the flavonoid pathway in tea plant (Camellia sinensis). BMC Plant Biology, 18(1), 266. DOI

  61. Kim, J. Y., Lim, H. Y., Shin, S. E., Cha, H. K., Seo, J. H., Kim, S. K., Park, S. H., & Son, G. H. (2018). Comprehensive transcriptome analysis of Sarcophaga peregrina, a forensically important fly species. Scientific Data, 5, 180220. DOI

  62. Zhu, C., Li, X., & Zheng, J. (2018). Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection. Gene, 666, 123-133. DOI

  63. Singh, N., Sahu, D. K., Chowdhry, R., Mishra, A., Goel, M. M., Faheem, M., Srivastava, C., Ojha, B. K., Gupta, D. K., & Kant, R. (2016). IsoSeq analysis and functional annotation of the infratentorial ependymoma tumor tissue on PacBio RSII platform. Meta Gene, 7, 70-75. DOI

  64. Sahlin, K., Tomaszkiewicz, M., Makova, K. D., & Medvedev, P. (2018). Deciphering highly similar multigene family transcripts from Iso-Seq data with IsoCon. Nature Communications, 9(1), 4601. DOI

  65. Balazs, Z., Tombacz, D., Szucs, A., Snyder, M., & Boldogkoi, Z. (2018). Dual Platform Long-Read RNA-Sequencing Dataset of the Human Cytomegalovirus Lytic Transcriptome. Frontiers in Genetics, 9, 432. DOI

  66. Workman, R. E., Myrka, A. M., Wong, G. W., Tseng, E., Welch, K. C., Jr., & Timp, W. (2018). Single-molecule, full-length transcript sequencing provides insight into the extreme metabolism of the ruby-throated hummingbird Archilochus colubris. GigaScience, 7(3), 1-12. DOI

  67. Yi, S., Zhou, X., Li, J., Zhang, M., & Luo, S. (2018). Full-length transcriptome of Misgurnus anguillicaudatus provides insights into evolution of genus Misgurnus. Scientific Reports, 8(1), 11699. DOI

  68. Nudelman, G., Frasca, A., Kent, B., Sadler, K. C., Sealfon, S. C., Walsh, M. J., & Zaslavsky, E. (2018). High resolution annotation of zebrafish transcriptome using long-read sequencing. Genome Research, 28(9), 1415-1425. DOI

  69. Dong, L., Liu, H., Zhang, J., Yang, S., Kong, G., Chu, J. S., Chen, N., & Wang, D. (2015). Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genomics, 16, 1039. DOI

  70. Wang, T., Wang, H., Cai, D., Gao, Y., Zhang, H., Wang, Y., Lin, C., Ma, L., & Gu, L. (2017). Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). The Plant Journal, 91(4), 684-699. DOI

  71. Abdel-Ghany, S. E., Hamilton, M., Jacobi, J. L., Ngam, P., Devitt, N., Schilkey, F., Ben-Hur, A., & Reddy, A. S. (2016). A survey of the sorghum transcriptome using single-molecule long reads. Nature Communications, 7, 11706. DOI

  72. Zhang, S. J., Wang, C., Yan, S., Fu, A., Luan, X., Li, Y., Sunny Shen, Q., Zhong, X., Chen, J. Y., Wang, X., Chin-Ming Tan, B., He, A., & Li, C. Y. (2017). Isoform Evolution in Primates through Independent Combination of Alternative RNA Processing Events. Molecular Biology and Evolution, 34(10), 2453-2468. DOI

  73. Liu, X., Mei, W., Soltis, P. S., Soltis, D. E., & Barbazuk, W. B. (2017). Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome. Molecular Ecology Resources, 17(6), 1243-1256. DOI

  74. Wu, T. D., & Watanabe, C. K. (2005). GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21(9), 1859-1875. DOI

  75. Gordon, S. P., Tseng, E., Salamov, A., Zhang, J., Meng, X., Zhao, Z., Kang, D., Underwood, J., Grigoriev, I. V., Figueroa, M., Schilling, J. S., Chen, F., & Wang, Z. (2015). Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing. PloS One, 10(7), e0132628. DOI

  76. Tardaguila, M., de la Fuente, L., Marti, C., Pereira, C., Pardo-Palacios, F. J., Del Risco, H., Ferrell, M., Mellado, M., Macchietto, M., Verheggen, K., Edelmann, M., Ezkurdia, I., Vazquez, J., Tress, M., Mortazavi, A., Martens, L., Rodriguez-Navarro, S., Moreno-Manzano, V., & Conesa, A. (2018). SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Research. DOI

  77. Deng, Y., Zheng, H., Yan, Z., Liao, D., Li, C., Zhou, J., & Liao, H. (2018). Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. International Journal of Molecular Sciences, 19(9). DOI

  78. Ren, P., Meng, Y., Li, B., Ma, X., Si, E., Lai, Y., Wang, J., Yao, L., Yang, K., Shang, X., & Wang, H. (2018). Molecular Mechanisms of Acclimatization to Phosphorus Starvation and Recovery Underlying Full-Length Transcriptome Profiling in Barley (Hordeum vulgare L.). Frontiers in Plant Science, 9, 500. DOI

  79. Xu, Z., Peters, R. J., Weirather, J., Luo, H., Liao, B., Zhang, X., Zhu, Y., Ji, A., Zhang, B., Hu, S., Au, K. F., Song, J., & Chen, S. (2015). Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. The Plant Journal, 82(6), 951-961. DOI

  80. Cao, H., Lai, Y., Bougouffa, S., Xu, Z., & Yan, A. (2017). Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853. BMC Genomics, 18(1), 459. DOI

  81. Ning, G., Cheng, X., Luo, P., Liang, F., Wang, Z., Yu, G., Li, X., Wang, D., & Bao, M. (2017). Hybrid sequencing and map finding (HySeMaFi): optional strategies for extensively deciphering gene splicing and expression in organisms without reference genome. Scientific Reports, 7, 43793. DOI

  82. Tombacz, D., Balazs, Z., Csabai, Z., Moldovan, N., Szucs, A., Sharon, D., Snyder, M., & Boldogkoi, Z. (2017). Characterization of the Dynamic Transcriptome of a Herpesvirus with Long-read Single Molecule Real-Time Sequencing. Scientific Reports, 7, 43751. DOI

  83. Young, G. R., Terry, S. N., Manganaro, L., Cuesta-Dominguez, A., Deikus, G., Bernal-Rubio, D., Campisi, L., Fernandez-Sesma, A., Sebra, R., Simon, V., & Mulder, L. C. F. (2018). HIV-1 Infection of Primary CD4(+) T Cells Regulates the Expression of Specific Human Endogenous Retrovirus HERV-K (HML-2) Elements. Journal of Virology, 92(1). DOI

  84. Lee, H., Pine, P. S., McDaniel, J., Salit, M., & Oliver, B. (2016). External RNA Controls Consortium Beta Version Update. Journal of Genomics, 4, 19-22. DOI

  85. Bolisetty, M. T., Rajadinakaran, G., & Graveley, B. R. (2015). Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biology, 16, 204. DOI

  86. Frith, M. C., Hamada, M., & Horton, P. (2010). Parameters for accurate genome alignment. BMC Bioinformatics, 11, 80. DOI

  87. de Jong, L. C., Cree, S., Lattimore, V., Wiggins, G. A. R., Spurdle, A. B., kConFab, I., Miller, A., Kennedy, M. A., & Walker, L. C. (2017). Nanopore sequencing of full-length BRCA1 mRNA transcripts reveals co-occurrence of known exon skipping events. Breast Cancer Research, 19(1), 127. DOI

  88. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. DOI

  89. Weirather, J. L., de Cesare, M., Wang, Y., Piazza, P., Sebastiano, V., Wang, X. J., Buck, D., & Au, K. F. (2017). Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research, 6, 100. DOI

  90. Fu, S., Ma, Y., Yao, H., Xu, Z., Chen, S., Song, J., & Au, K. F. (2018). IDP-denovo: de novo transcriptome assembly and isoform annotation by hybrid sequencing. Bioinformatics, 34(13), 2168-2176. DOI

  91. Moldovan, N., Szucs, A., Tombacz, D., Balazs, Z., Csabai, Z., Snyder, M., & Boldogkoi, Z. (2018). Multiplatform next-generation sequencing identifies novel RNA molecules and transcript isoforms of the endogenous retrovirus isolated from cultured cells. FEMS Microbiology Letters, 365(5). DOI

  92. Moldovan, N., Tombacz, D., Szucs, A., Csabai, Z., Snyder, M., & Boldogkoi, Z. (2017). Multi-Platform Sequencing Approach Reveals a Novel Transcriptome Profile in Pseudorabies Virus. Frontiers in Microbiology, 8, 2708. DOI

  93. Hargreaves, A. D., & Mulley, J. F. (2015). Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing. PeerJ, 3, e1441. DOI

  94. Marchet, C., Lecompte, L., Silva, C. D., Cruaud, C., Aury, J. M., Nicolas, J., & Peterlongo, P. (2018). De novo clustering of long reads by gene from transcriptomics data. Nucleic Acids Research. DOI

  95. Kent, W. J. (2002). BLAT--the BLAST-like alignment tool. Genome Research, 12(4), 656-664. DOI

  96. Oikonomopoulos, S., Wang, Y. C., Djambazian, H., Badescu, D., & Ragoussis, J. (2016). Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Scientific Reports, 6, 31602. DOI

  97. Jain, M., Fiddes, I. T., Miga, K. H., Olsen, H. E., Paten, B., & Akeson, M. (2015). Improved data analysis for the MinION nanopore sequencer. Nature Methods, 12(4), 351-356. DOI

  98. Chaisson, M. J., & Tesler, G. (2012). Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics, 13, 238. DOI

  99. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. DOI

  100. Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of Molecular Biology, 147(1), 195-197
  101. ' target='_blank' > DOI
  102. Sovic, I., Sikic, M., Wilm, A., Fenlon, S. N., Chen, S., & Nagarajan, N. (2016). Fast and sensitive mapping of nanopore sequencing reads with GraphMap. Nature Communications, 7, 11307. DOI

  103. Wagner, G. P., Kin, K., & Lynch, V. J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences, 131(4), 281-285. DOI