Biomedical Chemistry: Research and Methods 2024, 7(3), e00224

Strategy for Experimental Studies of Target Protein Interactomics

P.V. Ershov, Y.V. Mezentsev, E.O. Yablokov, L.A. Kaluzhskiy, O.V. Gnedenko*,
A.A. Gilep, A.S. Ivanov

Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; *e-mail: gnedenko.oksana@gmail.com

Keywords: protein-protein interactions; affine selection; protein subinteractome; complexation; surface plasmon resonance; platform

DOI:10.18097/BMCRM00224

The whole version of this paper is available in Russian.

It is known that intermolecular interactions of proteins and peptides play a critical role in life processes. Such interactions can be either directly related to the implementation of various functions or play the role of a regulator. Currently, there is no doubt that the majority of proteins function as part of various molecular complexes, the formation of which occurs due to protein-protein interactions (PPIs), the totality of which can be defined as the “protein interactome”. Protein subinteractome studies are critical for studying the functions and regulatory mechanisms of unknown or poorly annotated proteins, understanding the architecture of intracellular molecular machines, and the design of PPI modulators. Previously, we used combinations of experimental approaches, as well as analytical and preparative methods, to study the subinteractomes of functionally different cellular proteins, which allowed us to identify the protein subinteractomes of several clinically significant human proteins. The purpose of this work was to conceptualize the principles of the experimental platform we developed for studying protein subinteractomes and to describe its features in detail.

Figure 1. Block-diagram of the experimental platform for the study of protein subinteractomes.
Figure 2. SPR analysis of the interaction of the protein material of liver tissue lysate SEC fractions with immobilized protein CXXC1 (Uniprot ID: Q9P0U4) on the biosensor chip. (A) – distribution of the total binding signals of the protein material in the range of 1000 - 2000 kDa, (I); 150 - 500 kDa (II); 15 - 100 kDa (III). (B) - distribution of binding signals of the protein material of liver tissue lysate SEC fractions with average molecular weights of 15, 30, 45, 75 and 100 kDa. One RU (Resonance Unit) corresponds to the binding of one 1 pg of the protein material on one mm2 of the biosensor chip surface.

CLOSE
Table 1. Structure of the experimental platform for studying the subinteractomes of target proteins.

FUNDING

The research was supported by the Russian Science Foundation grant No. 23-15-00149.

REFERENCES

  1. Bludau, I., Aebersold, R. (2020) Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol., 21(6), 327–340. DOI
  2. Luck, K., Sheynkman, G.M., Zhang, I., Vidal, M. (2017) Proteome-scale human interactomics. Trends Biochem. Sci., 42(5), 342–354. DOI
  3. Ershov, P.V., Mezentsev, Y.V., Kopylov, A.T., Yablokov, E.O., Svirid, A.V., Lushchyk, A.Y., Kaluzhskiy, L.A., Gilep, A.A., Usanov, S.A., Medvedev, A.E., Ivanov, A.S. (2019) Affinity isolation and mass spectrometry identification of prostacyclin synthase (PTGIS) subinteractome. Biology (Basel), 8(2), 49. DOI
  4. Trisciuzzi, D., Villoutreix, B.O., Siragusa, L., Baroni, M., Cruciani, G., Nicolotti, O. (2023) Targeting protein-protein interactions with low molecular weight and short peptide modulators: Insights on disease pathways and starting points for drug discovery. Expert. Opin. Drug. Discov., 18(7), 737–752. DOI
  5. Ershov, P.V., Yablokov, E., Zgoda, V., Mezentsev, Y., Gnedenko, O., Kaluzhskiy, L., Svirid, A., Gilep, A., Usanov, S.A., Ivanov, A. (2021) A new insight into subinteractomes of functional antagonists: thromboxane (CYP5A1) and prostacyclin (CYP8A1) synthases. Cell Biol. Int., 45(6), 1175–1182. DOI
  6. Ershov, P., Mezentsev, Y., Gilep, A., Usanov, S., Buneeva, O., Medvedev, A., Ivanov, A. (2017) Isatin-induced increase in the affinity of human ferrochelatase and adrenodoxin reductase interaction. Protein Science, 26(12), 2458–2462. DOI
  7. Nakamura, K., Yamada, Y., Araki, K. (1986) [Nursing of patients with thoracic injuries]. Kango Gijutsu, 32(9), 1146–1151.
  8. Carregari, V.C. (2022) Protein extraction and sample preparation methods for shotgun proteomics with central nervous system cells and brain tissue. Adv. Exp. Med. Biol., 1382, 1–15. DOI
  9. Dapic, I., Baljeu-Neuman, L., Uwugiaren, N., Kers, J., Goodlett, D.R., Corthals, G.L. (2019) Proteome analysis of tissues by mass spectrometry. Mass Spectrom. Rev., 38(4–5), 403–441. DOI
  10. Cheerathodi, M.R., Meckes, D.G. (2020) BioID combined with mass spectrometry to study herpesvirus protein-protein interaction networks. Methods Mol. Biol., 2060, 327–341. DOI
  11. Ershov, P.V., Mezentsev, Y.V., Yablokov, E.O., Kaluzhskiy, L.A., Vakhrushev, I.V., Gnedenko, O.V., Florinskaya, A.V., Gilep, A.A., Usanov, S.A., Yarygin, K.N., Ivanov, A.S. (2019) A method of lysate preparation to improve the isolation efficiency of protein partners for target proteins encoded by the genes of human chromosome 18. Biomedical Chemistry: Research and Methods, 2(1), e00090. DOI
  12. Florinskaya, A., Ershov, P., Mezentsev, Y., Kaluzhskiy, L., Yablokov, E., Medvedev, A., Ivanov, A. (2018) SPR biosensors in direct molecular fishing: Implications for protein interactomics. Sensors (Switzerland), 18(5), 1616. DOI
  13. Florinskaya, A.V., Ershov, P.V., Mezentsev, Y.V., Kaluzhskiy, L.A., Yablokov, E.O., Buneeva, O.A., Zgoda, V.G., Medvedev, A.E., Ivanov, A.S. (2018) The analysis of participation of individual proteins in the protein interactome formation. Biomeditsinskaya Khimiya, 64(2), 169–174. DOI
  14. Kaiser, P., Meierhofer, D.,Wang, X., Huang, L. (2008) Tandem affinity purification combined with mass spectrometry to identify components of protein complexes. Methods Mol. Biol., 439, 309–326. DOI
  15. Liu, G., Fu, T., Han, Y., Hu, S., Zhang, X., Zheng, M., Hao, P., Pan, L., Kang, J. (2020) Probing protein-protein interactions with label-free mass spectrometry quantification in combination with affinity purification by spin-tip affinity columns. Anal. Chem., 92(5), 3913–3922. DOI
  16. Pardo, M., Choudhary, J.S. (2012) Assignment of protein interactions from affinity purification/mass spectrometry data. J. Proteome Res., 11(3), 1462-1474. DOI
  17. Jia, Y., Chen, S., Wang, Q., Li, J. (2024) Recent progress in biosensor regeneration techniques. Nanoscale, 16(6), 2834–2846. DOI
  18. Food and Drug Administration,HHS (2019) Immunogenicity testing of therapeutic protein products-developing and validating assays for anti-drug antibody detection; Guidance for industry. Docket No. FDA-2009-D-0539,.
  19. Thoren, K.L., Pasi, B., Delgado, J.C., Wu, A.H.B., Lynch, K.L. (2018) Quantitation of infliximab and detection of antidrug antibodies in serum by use of surface plasmon resonance. J. Appl. Lab. Med., 2(5), 725–736. DOI
  20. Li, Y., Franklin, S., Zhang, M.J., Vondriska, T.M. (2011) Highly efficient purification of protein complexes from mammalian cells using a novel streptavidin-binding peptide and hexahistidine tandem tag system: Application to Bruton's tyrosine kinase. Protein Science, 20(1), 140–149. DOI
  21. Bludau, I., Heusel, M., Frank, M., Rosenberger, G., Hafen, R., Banaei-Esfahani, A., van Drogen, A., Collins, B.C., Gstaiger, M., Aebersold, R. (2020) Complex-centric proteome profiling by SEC-SWATH-MS for the parallel detection of hundreds of protein complexes. Nature Protocols, 15(8), 2341–2386. DOI
  22. DasGupta, B.R., Boroff, D.A. (1968) Separation of toxin and hemagglutinin from crystalline toxin of Clostridium botulinum typeAby anion exchange chromatography and determination of their dimensions by gel filtration. J. Biol. Chem., 243(5), 1065–1072.
  23. Gilbert, M., Schulze, W.X. (2019) Global identification of protein complexes within the membrane proteome of arabidopsis roots using a SEC-MS approach. J. Proteome Res., 18(1), 107–119. DOI
  24. Fossati, A., Frommelt, F., Uliana, F., Martelli, C., Vizovisek,M., Gillet, L., Collins, B., Gstaiger, M., Aebersold, R. (2021) System-wide profiling of protein complexes via size exclusion chromatography-mass spectrometry (SEC-MS). Methods Mol. Biol., 2259, 269–294. DOI
  25. Wittig, I., Malacarne, P.F. (2021) Complexome profiling: Assembly and remodeling of protein complexes. Int. J. Mol. Sci., 22(15), 7809. DOI
  26. Heusel, M., Bludau, I., Rosenberger, G., Hafen, R., Frank, M., Banaei-Esfahani, A., van Drogen, A., Collins, B.C., Gstaiger, M., Aebersold, R. (2019) Complex-centric proteome profiling by SEC-SWATH-MS. Mol. Syst. Biol., 15(1), e8438. DOI
  27. Ershov, P.V., Mezentsev, Y.V., Yablokov, E.O., Kaluzhsky, L.A., Florinskaya, A.V., Buneeva, O.A., Medvedev, A.E., Ivanov, A.S. (2018) Effect of bioregulator isatin on protein-protein interactions involving isatin-binding proteins. Russ. J. Bioorg. Chem., 44(2), 193–198. DOI
  28. Yablokov, E.O., Sushko, T.A., Ershov, P.V., Florinskaya, A.V., Gnedenko, O.V., Shkel, T.V., Grabovec, I.P., Strushkevich, N.V., Kaluzhskiy, L.A., Usanov, S.A., Gilep, A.A., Ivanov, A.S. (2019) A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of interactions of twelve cytochrome P450 isoforms and their redox partners. Biochimie, 162, 156–166. DOI
  29. Campbell, L., Simpson, D., Ramasamy, K., Sadler, R. (2021) Using quantitative immunoprecipitation mass spectrometry (QIP-MS) to identify low level monoclonal proteins. Clin. Biochem., 95, 81–83. DOI
  30. Jensen, P., Patel, B., Smith, S., Sabnis, R., Kaboord, B. (2021) Improved immunoprecipitation to mass spectrometry method for the enrichment of low-abundant protein targets. Methods Mol. Biol., 2261, 229–246. DOI
  31. Jerabek-Willemsen, M., Wienken, C.J., Braun, D., Baaske, P., Duhr, S. (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol., 9(4), 342–353. DOI
  32. Nair, M.P., Teo, A.J.T., Li, K.H.H. (2021) Acoustic biosensors and microfluidic devices in the decennium: Principles and applications. Micromachines (Basel), 13(1), 24. DOI
  33. Basavarajappa, H.D., Sulaiman, R.S., Qi, X., Shetty, T., Sheik Pran Babu, S., Sishtla, K.L., Lee, B., Quigley, J., Alkhairy, S., Briggs, C.M., Gupta, K., Tang, B., Shadmand, M., Grant, M.B., Boulton, M.E., Seo, S.-Y., Corson, T.W. (2017) Ferrochelatase is a therapeutic target for ocular neovascularization. EMBO Mol. Med., 9(6), 786–801. DOI
  34. Sishtla, K., Lambert-Cheatham, N., Lee, B., Han, D.H., Park, J., Sardar Pasha, S.P.B., Lee, S., Kwon, S., Muniyandi, A., Park, B., Odell, N., Waller, S., Park, I.Y., Lee, S.J., Seo, S.-Y., Corson, T.W. (2022) Small-molecule inhibitors of ferrochelatase are antiangiogenic agents. Cell Chem. Biol., 29(6), 1010–1023.e14. DOI
  35. Burden, A.E., Wu, C., Dailey, T.A., Busch, J.L., Dhawan, I.K., Rose, J.P., Wang, B., Dailey, H.A. (1999) Human ferrochelatase: Crystallization, characterization of the [2Fe-2S] cluster and determination that the enzyme is a homodimer. Biochim. Biophys. Acta, 1435(1–2), 191–197. DOI
  36. Obi, C.D., Dailey, H.A., Jami-Alahmadi, Y.,Wohlschlegel, J.A., Medlock, A.E. (2023) Proteomic analysis of ferrochelatase interactome in erythroid and non-erythroid cells. Life (Basel), 13(2), 577. DOI
  37. Ivanov, A.S., Ershov, P.V., Molnar, A.A., Mezentsev, Yu.V., Kaluzhskiy, L.A., Yablokov, E.O., Florinskaya, A.V., Gnedenko, O.V., Medvedev, A.E., Kozin, S.A., Mitkevich, V.A., Makarov, A.A., Gilep, A.A., Luschik, A.Ya., Gaidukevich, I.V., Usanov, S.A. (2016) Direct molecular fishing in molecular partners investigation in protein-protein and protein-peptide interactions. Russ. J. Bioorg. Chem., 42(1), 14–21. DOI
  38. Sheftel, A.D., Stehling, O., Pierik, A.J., Elsasser, H.-P., Muhlenhoff, U., Webert, H., Hobler, A., Hannemann, F., Bernhardt, R., Lill, R. (2010) Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc. Natl. Acad. Sci. USA, 107(26), 11775–11780. DOI
  39. Ershov, P.V., Veselovsky, A.V., Mezentsev, Y.V., Yablokov, E.O., Kaluzhskiy, L.A., Tumilovich, A.M., Kavaleuski, A.A., Gilep, A.A., Moskovkina, T.V., Medvedev, A.E., Ivanov, A.S. (2020) Mechanism of the affinity-enhancing effect of isatin on human ferrochelatase and adrenodoxin reductase complex formation: Implication for protein interactome regulation. Int. J. Mol. Sci., 21(20), 7605. DOI
  40. Biringer, R.G. (2020) The enzymology of the human prostanoid pathway. Mol. Biol. Rep., 47(6), 4569–4586. DOI
  41. Beccacece, L., Abondio, P., Bini, C., Pelotti, S., Luiselli, D. (2023) The link between prostanoids and cardiovascular diseases. Int. J. Mol. Sci., 24(4), 4193. DOI
  42. Svirid, A.V., Ershov, P.V., Yablokov, E.O., Kaluzhskiy, L.A., Mezentsev, Y.V., Florinskaya, A.V., Sushko, T.A., Strushkevich, N.V., Gilep, A.A., Usanov, S.A., Medvedev, A.E., Ivanov, A.S. (2017) Direct molecular fishing of new protein partners for human thromboxane synthase. Acta Naturae, 9(4), 92–100. DOI