Biomedical Chemistry: Research and Methods, 2018, 1(2), e00032

Electrochemical Methods for Studies of Biological Molecules

V.V. Shumyantseva1,2*, T.V. Bulko1, E.V. Suprun1, A.V. Kuzikov1,2, L.V. Sigolaeva1,3, R.A. Masamrech1,2, A.I. Archakov1,2

1Institute of Biomedical Chemistry, 8119121 Pogodinskaya Str., 10 bldg. 8, Moscow, Russia,
*e-mail: viktoria.shumyantseva@ibmc.msk.ru
2Biochemistry Department of Medico-Biological faculty Pirogov Russian National Research Medical University,
Moscow, Russia
3Lomonosov Moscow State University, Chemical Department, Moscow, Russia

Keywords: electoanalysis; bioelectrochemistry; hemeproteins; DNA; drugs; medicinal preparations; electrooxidation; electrocatalysis

DOI: 10.18097/BMCRM00032

The whole version of this paper is available in Russian.

This paper focuses on experimental data of electroanalysis of enzymes, proteins, peptides, DNA, and medicinal preparations, obtained by authors. Methods for enzyme electrodes preparation, methods for kinetic parameters calculations based on analysis of electrochemical data. Results are described as algorithm for efficient electrochemical reaction of biomolecules.

Figure 1. Typical cyclic voltammogram

Figure 2. Cyclic voltammograms of cytochrome P450 2B4 immobilized on the glassy carbon, modified by sodium montmorillonite colloid (Na,Ca)0.33(Al,Mg)2(Si4O10) and Pt nanoparticles in argon-saturated 0.1 M potassium phosphate buffer, 0.05 M KCl, pH 7.4, in air saturated buffer, and in the presence of 8 mM aminopyrine, scan rate 10 V s-1

Figure 3a. Differential pulse voltammetry (DPV), the oxidation curve of SPE/CNT with varied L-tyrosine concentration (0.1 mM ÷ 1 mM) in human serum

Figure 3b. The dependence of DPV oxidation current intensity of SPE/CNT on the L-tyrosine concentration in human serum

Figure 4. Square wave voltammograms of the Aβ(1-16) oxidation in the absence and presence of Cu(II) ions. Concentrations of Aβ(1-16) – 5×10–5 M. Concentrations of Cu(II) ions – 1×10–3 M. Tris-buffer, pH 7.2

Figure 5. Scheme of pyrines electrooxidation

Figure 6. Differential pulse voltammetry (DPV) of SPE/MCNT (---) and DNA (3mg/ml) on SPE/MCNT (- ), potential window 0.4÷1.5 V, pulse amplitude 0.05 V, pulse width 0.05, pulse period 0.5 s, accumulation potential 0.4 V, accumulation time 5 min

Figure 7. Electrochemical acetaminophen redox reactions

Figure 8. Differential pulse voltammetry (DPV) of acetaminophen (1 mM ÷10 μM) on SPE. Electrolyte 0.1 M potassium phosphate buffer, pH 7.4 containing 0.05 M NaCl. Potential window 0 – 1.2 V, room temperature

Figure 9. Differential pulse voltammetry (DPV) of acetaminophen in human serum on SPE. Electrolyte 0.1 M potassium phosphate buffer, pH 7.4 containing 0.05 M NaCl. Potential window 0 – 1.2 V, room temperature

CLOSE
Table 1. Comparative characteristics of electrochemical systems

ACKNOWLEDGEMENTS

This study was supported by the Russian Foundation for Basic Research (project no. 18-04-00374) and within the framework of the Fundamental Research Program of State Academies of Sciences for 2013-2020.

REFERENCES

  1. Bard, A.E. (2001) Electrochemical methods. Fundamental and Applications, A.E. Bard, L.R. Faulkner. NY: Eds John Wiley & Sons, Second edition
  2. Scholz, F. (2002) Electroanalytical methods. Guide to Experiments and Applications. Springer-Verlag Berlin Heidelberg
  3. Wang, J. (2006) Analytical Electrochemistry, Third edition, p. 32, Wiley-VCH
  4. Compton, R., & Banks, C. (2011) Understanding voltammetry. (2nd edition), by Imperial College Press
  5. Laviron, E. (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry, 101, 19-28. DOI
  6. Shumkov, A.A., Suprun, E.V., Shatinina, S.Z., Lisitsa, A.V., Shumyantseva, V.V., & Archakov, A.I. (2013) Gold and Silver Nanoparticles for Electrochemical Detection of Cardiac Troponin I based on Striping Voltammetry. BioNanoScience, 3, 216-222. DOI
  7. Hrycay, E.G., & Bandiera, S.M. (2015) Monooxygenase, peroxygenase and peroxidase properties and reaction mechanism of cytochrome P450 enzymes. pp. 1-61. In EG Hrycay and SM Bandiera (eds.), Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology 851. Springer International Publishing SwitzerlandDOI
  8. Shumyantseva, V.V., Ivanov, Yu.D., Bistolas, N., Scheller, F.W., Archakov, A.I., & Wollenberger, U. (2004) Direct Electron Transfer of Cytochrome P450 2B4 at Electrodes Modified with Nonionic Detergent and Colloidal Clay Nanoparticles. Analytical Chemistry, 76, 6046-6052. DOI
  9. Shumyantseva, V.V., Bulko, T., Shich, E., Makhova, A., Kuzikov, A., & Archakov, A.A. (2015) Cytochrome P450 Enzymes and Electrochemistry: Crosstalk with Electrodes as Redox Partners and Electron Sources. pp. 229-246. In EG Hrycay and SM Bandiera (eds.), Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology 851. Springer International Publishing Switzerland. DOI
  10. Bartlett, P.N. (Ed.), (2008) Bioelectrochemistry: Fundametals, Experimental Techniques and Applications, Ch. 2, John Wiley & Sons, Ltd., p. 268
  11. Hagen, K.D., Gillan, J.M., Im, S.-C., Landefeld, S., Mead, G., Hiley, M., et al. (2013). Electrochemistry of mammalian cytochrome P450 2B4 indicates tunable thermodynamic parameters in surfactant films. Journal of Inorganic Biochemistry, 129, 30-34. DOI
  12. Shumyantseva, V.V., Suprun, E.V., Bulko, T.V., & Archakov, A.I. (2014). Electrochemical methods for detection of post-translational modifications of proteins. Biosensors and Bioelectronics, 61, 131-139. DOI
  13. Brabec, V, & Mornstein, V. (1980). Biochimica et Biophysica Acta, 625, 43-50. DOI
  14. Reynaud, J.A., Malfoy, B., & Bere, A. (1980). The electrochemical oxidation of three proteins: RNAase A, bovine serum albumin and concanavalin A at solid electrodes. Journal of Electroanalytical and Chemical Interfacial Electrochemistry 116, 595-606. DOI
  15. Suprun, E.V., Zharkova, M.S., Morozevich, G.E., Veselovsky, A.V., Shumyantseva, V.V. & Archakov, A.I. (2013). Analysis of Redox Activity of Proteins on the Carbon Screen Printed Electrodes. Electronanalysis, 25(9), 2109-2116. DOI
  16. Shumyantseva, V., Bulko, T., Kuzikov, A., Masamrekh, R., & Archakov, A. (2018). Analysis of L-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2). Amino Acids, 50, 823-829. DOI
  17. Radko, S.P., Khmeleva, S.A., Suprun, E.V., Kozin, S.A., Bodoev, N.V., Makarov A.A. et al. (2015). Physico-chemical methods for studying amyloid-β aggregation. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 9(3), 258-274. DOI
  18. Abo-Hamadb, A., AlSaadi, M.A., Hayyan, M., Juneidi, I., & Hashim, M.A. (2016). Ionic Liquid-Carbon Nanomaterial Hybrids for Electrochemical Sensor Applications: a Review. Electrochimica Acta 193 (2016) 321–343. DOI
  19. Ren, S., Wang, H., Zhang, H., Yu, L., Li, M., & Li, M. (2015). Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst. Journal of Electroanalytical Chemistry, 750, 65–73. DOI
  20. Rahi, A., Karimian, K., & Heli, H. (2016). Nanostructured materials in electroanalysis of pharmaceuticals. Analytical Biochemistry, 497, 39-47. DOI
  21. Cernat, A., Tertis¸ M., & Sandulescu, R. (2015). Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Analytica Chimica Acta, 886, 16-28. DOI