Immobilization of L-asparaginase on Oxidized Bacterial Cellulose to Improve the Thermal Stability of the Enzyme
Main Article Content
Abstract
Bacterial cellulose (BC) membranes can be modified for covalent immobilization of macromolecules. One type of modification is oxidation, after which the oxidized BC membrane (OBC) could be used as a matrix for covalent immobilization of enzymes. In this work, the BC membrane was chemically oxidized with sodium periodate (NaIO4) to increase the stability of immobilized mesophilic L-asparaginase (L-ASNase) from Erwinia carotovora (EwA). IR spectroscopy confirmed the immobilization of L-ASNase EwA on OBC membranes. Immobilization of the enzyme increased its temperature optimum for its activity by 15°C and raised the inactivation temperature to 60°C. The OBC membrane could be used as a potential carrier for covalent immobilization of enzymes to improve their pharmacological properties by increasing their thermostability.
Article Details
References
- Aleksandrova, S.S., Abakumova, O.Yu., Podobed, O.V., Melik-Nubarov, N.S., Kudryashova, E.V., Grishin, D.V., Archakov, A.I. (2015) Bacterial recombinant L-asparaginases: Properties, structure and anti-proliferative activity. Biomeditsinskaya Khimiya, 61(3), 312–324. DOI
- Alexandrova, S.S., Gladilina, Y.A., Pokrovskaya, M.V., Sokolov, N.N., Zhdanov, D.D. (2022) Mechanisms of development of side effects and drug resistance to asparaginase and ways to overcome them. Biomeditsinskaya Khimiya, 68(2), 104–116. DOI
- Dumina, M.V., Eldarov, M.A., Zdanov, D.D., Sokolov, N.N. (2020) L-asparaginases of extremophilic microorganisms in biomedicine. Biomeditsinskaya Khimiya, 66(2), 105–123. DOI
- Tsegaye, K., Tsehai, B.A., Getie, B. (2024) Desirable L-asparaginases for treating cancer and current research trends. Front. Microbiol., 15, 1269282. DOI
- Darnal, S., Patial, V., Kumar, V., Kumar, S., Kumar, V., Padwad, Y.S., Singh D. (2023) Biochemical characterization of extremozyme L-asparaginase from Pseudomonas sp. PCH199 for therapeutics. AMB Express, 13(1), 22. DOI
- Papageorgiou, A.C., Posypanova, G.A., Andersson, S.A. Sokolov, N.N., Krasotkina, J. (2008) Structural and functional insights into Erwinia carotovora L-asparaginase. FEBS J., 275(17), 4306–4316. DOI
- Zhang, W., Dai, Q., Huang, Z., Xu, W. (2023) Identification and thermostability modification of the mesophilic L-asparaginase from Limosilactobacillus secaliphilus. Appl. Biochem. Biotechnol., 196(6), 3387–3401. DOI
- Jiao, L., Chi, H., Xia, B., Lu, Z., Bie, X., Zhao, H., Lu, F., Chen, M. (2022) Thermostability improvement of L-asparaginase from Acinetobacter soli via consensus-designed cysteine residue substitution. Molecules, 27(19), 6670. DOI
- Shishparenok, A.N., Gladilina, Y.A., Zhdanov, D.D. (2023) Engineering and expression strategies for optimization of L-asparaginase development and production. Int. J. Mol. Sci., 24(20), 15220. DOI
- Kotzia, G.A., Labrou, N.E. (2009) Engineering thermal stability of L-asparaginase by in vitro directed evolution. FEBS J., 276(6), 1750–1761. DOI
- Chi, H., Wang, Y., Xia, B., Zhou, Y., Lu, Z., Lu, F., Zhu, P. (2022) Enhanced thermostability and molecular insights for L-asparaginase from Bacillus licheniformis via structure- and computation-based rational design. J. Agric. Food Chem., 70(45), 14499–14509. DOI
- Bjørk, A., Dalhus, B., Mantzilas, D., Sirevåg, R., Eijsink, V.G.H. (2004) Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface. J. Mol. Biol., 341(5), 1215–1226. DOI
- Meneguetti, G.P., Santos, J.H.P.M., Obreque, K.M.T., Barbosa, C.M.V., Monteiro, G., Farsky, S.H.P., Marim de Oliveira, A., Angeli, C.B., Palmisano, G., Ventura, S.P.M., Pessoa-Junior, A., de Oliveira Rangel-Yagui, C. (2019) Novel site-specific PEGylated L-asparaginase. PloS ONE, 14(2), e0211951. DOI
- Feenstra, L.R., Gehring, R., van Geijlswijk, I.M., König, T., Prinsen, H.C.M.T., Vandemeulebroecke, K., Lammens, T., Krupa, A., Teske, E. (2022) Evaluation of PEG-L-asparaginase in asparagine suppression and anti-drug antibody development in healthy Beagle dogs: A multi-phase preclinical study. Veterinary J., 286, 105854. DOI
- Melik-Nubarov, N.S., Grozdova, I.D., Lomakina, G.Y., Pokrovskaya, M.V., Pokrovski, V.S., Aleksandrova, S.S., Abakumova, O.Y., Podobed, O.V., Grishin, D.V., Sokolov, N.N. (2017) PEGylated recombinant L-asparaginase from Erwinia carotovora: Production, properties, and potential applications. Appl. Biochem. Microbiol., 53(2), 165–172. DOI
- Vasconcelos, N.F., Andrade, F.K., Vieira, L.D.A.P., Vieira, R.S., Vaz J.M., Chevallier, P., Mantovani, D., Borges, M.D.F., Rosa, M.D.F. (2020) Oxidized bacterial cellulose membrane as support for enzyme immobilization: Properties and morphological features. Cellulose, 27(6), 3055–3083. DOI
- Wu, S.-C., Wu, S.-M., Su, F.-M. (2017) Novel process for immobilizing an enzyme on a bacterial cellulose membrane through repeated absorption. J. Chem. Technol. Biotechnol., 92(1), 109–114. DOI
- Meister, A. (1955) Glutaminase, asparaginase, and α-keto acid-ω-amidase. Methods Enzymol., 2, 380–385.
- Krasotkina, J., Borisova, A.A., Gervaziev, Y.V., Sokolov, N.N. (2004) One-step purification and kinetic properties of the recombinant L-asparaginase from Erwinia carotovora. Biotechnol. Appl. Biochem., 39(2), 215–221. DOI
- Bora, U., Kannan, K., Nahar, P. (2005) A simple method for functionalization of cellulose membrane for covalent immobilization of biomolecules. J. Membrane Sci., 250(1–2), 215–222. DOI
- Cai, Q., Hu, C., Yang, N., Wang, Q., Wang, J., Pan, H., Hu, Y., Ruan, C. (2018) Enhanced activity and stability of industrial lipases immobilized onto spherelike bacterial cellulose. Int. J. Biol. Macromol., 109, 1174–1181. DOI
- Drozd, R., Szymańska, M., Rakoczy, R., Junka, A., Szymczyk, P., Fijałkowski, K. (2019) Functionalized magnetic bacterial cellulose beads as carrier for Lecitase® Ultra immobilization. Appl. Biochem. Biotechnol., 187(1), 176–193. DOI
- Li, G., Nandgaonkar, A.G., Wang, Q., Zhang, J., Krause, W.E., Wei, Q., Lucia, L.A. (2017) Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and bio-catalytic dye degradation. J. Membrane Sci., 525(6), 89–98. DOI
- Li, J., Wan, Y., Li, L., Liang, H., Wang, J. (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng.: C, 29(5), 1635–1642. DOI
- Isobe, N., Lee, D.-S., Kwon, Y.-J., Kimura, S., Kuga, S., Wada, M., Kim, U.-J. (2011) Immobilization of protein on cellulose hydrogel. Cellulose, 18(5), 1251–1256. DOI
- Kumari, S., Chauhan, G.S., Ahn, J.-H., Reddy, N.S. (2016) Bio-waste derived dialdehyde cellulose ethers as supports for α-chymotrypsin immobilization. Int. J. Biol. Macromol., 85, 227–237. DOI
- Navapour, L., Mogharrab, N., Amininasab, M. (2014) How modification of accessible lysines to phenylalanine modulates the structural and functional properties of horseradish peroxidase: A simulation study. PLoS ONE, 9(10), e109062. DOI
- Kuchumova A.V. (2007) Pegilirovanie rekombinantnoj L-asparaginazy Erwinia carotovora s cel'yu usileniya ee terapevticheski znachimyh svojstv. Diss. kand. nauk, Institute of Biomedical Chemistry, Moscow.