Иммобилизация на окисленной бактериальной целлюлозе L-аспарагиназы для улучшения термостабильности фермента

##plugins.themes.bootstrap3.article.main##

А.Н. Шишпарёнок
С.А. Королёва
И.Д. Злотников
Ю.А. Гладилина
М.В. Покровская
С.С. Александрова
Д.Д. Жданов

Аннотация

Мембрана бактериальной целлюлозы (БЦ) может быть модифицирована для ковалентной иммобилизации биологических макромолекул. Одним из типов модификации является окисление. Окисленная мембрана БЦ (OБЦ) может применяться как матрица для ковалентной иммобилизации ферментов. Для ковалентной иммобилизации мезофильной L-аспарагиназы (L-ASNase) из Erwinia carotovora (EwA) и повышения её стабильности использовали химическую модификацию мембраны БЦ посредством окисления периодатом натрия (NaIO4). ИК-спектроскопия подтвердила иммобилизацию L-ASNase EwA на мембранах ОБЦ. Иммобилизация фермента увеличивала оптимум его температурной активности на 15°С и повышала температуру инактивации до 60°С. Мембрана ОБЦ может служить потенциальным носителем для ковалентной иммобилизации ферментов с целью улучшения их фармакологических свойств за счёт увеличения термостабильности.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Шишпарёнок A., Королёва S., Злотников I., Гладилина Y., Покровская M., Александрова S., & Жданов D. (2024). Иммобилизация на окисленной бактериальной целлюлозе L-аспарагиназы для улучшения термостабильности фермента. Biomedical Chemistry: Research and Methods, 7(3), e00234. https://doi.org/10.18097/BMCRM00234
Раздел
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Библиографические ссылки

  1. Aleksandrova, S.S., Abakumova, O.Yu., Podobed, O.V., Melik-Nubarov, N.S., Kudryashova, E.V., Grishin, D.V., Archakov, A.I. (2015) Bacterial recombinant L-asparaginases: Properties, structure and anti-proliferative activity. Biomeditsinskaya Khimiya, 61(3), 312–324. DOI
  2. Alexandrova, S.S., Gladilina, Y.A., Pokrovskaya, M.V., Sokolov, N.N., Zhdanov, D.D. (2022) Mechanisms of development of side effects and drug resistance to asparaginase and ways to overcome them. Biomeditsinskaya Khimiya, 68(2), 104–116. DOI
  3. Dumina, M.V., Eldarov, M.A., Zdanov, D.D., Sokolov, N.N. (2020) L-asparaginases of extremophilic microorganisms in biomedicine. Biomeditsinskaya Khimiya, 66(2), 105–123. DOI
  4. Tsegaye, K., Tsehai, B.A., Getie, B. (2024) Desirable L-asparaginases for treating cancer and current research trends. Front. Microbiol., 15, 1269282. DOI
  5. Darnal, S., Patial, V., Kumar, V., Kumar, S., Kumar, V., Padwad, Y.S., Singh D. (2023) Biochemical characterization of extremozyme L-asparaginase from Pseudomonas sp. PCH199 for therapeutics. AMB Express, 13(1), 22. DOI
  6. Papageorgiou, A.C., Posypanova, G.A., Andersson, S.A. Sokolov, N.N., Krasotkina, J. (2008) Structural and functional insights into Erwinia carotovora L-asparaginase. FEBS J., 275(17), 4306–4316. DOI
  7. Zhang, W., Dai, Q., Huang, Z., Xu, W. (2023) Identification and thermostability modification of the mesophilic L-asparaginase from Limosilactobacillus secaliphilus. Appl. Biochem. Biotechnol., 196(6), 3387–3401. DOI
  8. Jiao, L., Chi, H., Xia, B., Lu, Z., Bie, X., Zhao, H., Lu, F., Chen, M. (2022) Thermostability improvement of L-asparaginase from Acinetobacter soli via consensus-designed cysteine residue substitution. Molecules, 27(19), 6670. DOI
  9. Shishparenok, A.N., Gladilina, Y.A., Zhdanov, D.D. (2023) Engineering and expression strategies for optimization of L-asparaginase development and production. Int. J. Mol. Sci., 24(20), 15220. DOI
  10. Kotzia, G.A., Labrou, N.E. (2009) Engineering thermal stability of L-asparaginase by in vitro directed evolution. FEBS J., 276(6), 1750–1761. DOI
  11. Chi, H., Wang, Y., Xia, B., Zhou, Y., Lu, Z., Lu, F., Zhu, P. (2022) Enhanced thermostability and molecular insights for L-asparaginase from Bacillus licheniformis via structure- and computation-based rational design. J. Agric. Food Chem., 70(45), 14499–14509. DOI
  12. Bjørk, A., Dalhus, B., Mantzilas, D., Sirevåg, R., Eijsink, V.G.H. (2004) Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface. J. Mol. Biol., 341(5), 1215–1226. DOI
  13. Meneguetti, G.P., Santos, J.H.P.M., Obreque, K.M.T., Barbosa, C.M.V., Monteiro, G., Farsky, S.H.P., Marim de Oliveira, A., Angeli, C.B., Palmisano, G., Ventura, S.P.M., Pessoa-Junior, A., de Oliveira Rangel-Yagui, C. (2019) Novel site-specific PEGylated L-asparaginase. PloS ONE, 14(2), e0211951. DOI
  14. Feenstra, L.R., Gehring, R., van Geijlswijk, I.M., König, T., Prinsen, H.C.M.T., Vandemeulebroecke, K., Lammens, T., Krupa, A., Teske, E. (2022) Evaluation of PEG-L-asparaginase in asparagine suppression and anti-drug antibody development in healthy Beagle dogs: A multi-phase preclinical study. Veterinary J., 286, 105854. DOI
  15. Melik-Nubarov, N.S., Grozdova, I.D., Lomakina, G.Y., Pokrovskaya, M.V., Pokrovski, V.S., Aleksandrova, S.S., Abakumova, O.Y., Podobed, O.V., Grishin, D.V., Sokolov, N.N. (2017) PEGylated recombinant L-asparaginase from Erwinia carotovora: Production, properties, and potential applications. Appl. Biochem. Microbiol., 53(2), 165–172. DOI
  16. Vasconcelos, N.F., Andrade, F.K., Vieira, L.D.A.P., Vieira, R.S., Vaz J.M., Chevallier, P., Mantovani, D., Borges, M.D.F., Rosa, M.D.F. (2020) Oxidized bacterial cellulose membrane as support for enzyme immobilization: Properties and morphological features. Cellulose, 27(6), 3055–3083. DOI
  17. Wu, S.-C., Wu, S.-M., Su, F.-M. (2017) Novel process for immobilizing an enzyme on a bacterial cellulose membrane through repeated absorption. J. Chem. Technol. Biotechnol., 92(1), 109–114. DOI
  18. Meister, A. (1955) Glutaminase, asparaginase, and α-keto acid-ω-amidase. Methods Enzymol., 2, 380–385.
  19. Krasotkina, J., Borisova, A.A., Gervaziev, Y.V., Sokolov, N.N. (2004) One-step purification and kinetic properties of the recombinant L-asparaginase from Erwinia carotovora. Biotechnol. Appl. Biochem., 39(2), 215–221. DOI
  20. Bora, U., Kannan, K., Nahar, P. (2005) A simple method for functionalization of cellulose membrane for covalent immobilization of biomolecules. J. Membrane Sci., 250(1–2), 215–222. DOI
  21. Cai, Q., Hu, C., Yang, N., Wang, Q., Wang, J., Pan, H., Hu, Y., Ruan, C. (2018) Enhanced activity and stability of industrial lipases immobilized onto spherelike bacterial cellulose. Int. J. Biol. Macromol., 109, 1174–1181. DOI
  22. Drozd, R., Szymańska, M., Rakoczy, R., Junka, A., Szymczyk, P., Fijałkowski, K. (2019) Functionalized magnetic bacterial cellulose beads as carrier for Lecitase® Ultra immobilization. Appl. Biochem. Biotechnol., 187(1), 176–193. DOI
  23. Li, G., Nandgaonkar, A.G., Wang, Q., Zhang, J., Krause, W.E., Wei, Q., Lucia, L.A. (2017) Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and bio-catalytic dye degradation. J. Membrane Sci., 525(6), 89–98. DOI
  24. Li, J., Wan, Y., Li, L., Liang, H., Wang, J. (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng.: C, 29(5), 1635–1642. DOI
  25. Isobe, N., Lee, D.-S., Kwon, Y.-J., Kimura, S., Kuga, S., Wada, M., Kim, U.-J. (2011) Immobilization of protein on cellulose hydrogel. Cellulose, 18(5), 1251–1256. DOI
  26. Kumari, S., Chauhan, G.S., Ahn, J.-H., Reddy, N.S. (2016) Bio-waste derived dialdehyde cellulose ethers as supports for α-chymotrypsin immobilization. Int. J. Biol. Macromol., 85, 227–237. DOI
  27. Navapour, L., Mogharrab, N., Amininasab, M. (2014) How modification of accessible lysines to phenylalanine modulates the structural and functional properties of horseradish peroxidase: A simulation study. PLoS ONE, 9(10), e109062. DOI
  28. Kuchumova A.V. (2007) Pegilirovanie rekombinantnoj L-asparaginazy Erwinia carotovora s cel'yu usileniya ee terapevticheski znachimyh svojstv. Diss. kand. nauk, Institute of Biomedical Chemistry, Moscow.