Interaction of the Anticancer Drug Abiraterone with dsDNA
Main Article Content
Abstract
The electroanalytical characteristics of double-stranded DNA (dsDNA) and the complex of dsDNA and the antitumor drug abiraterone acetate (AA) were studied by differential pulse voltammetry. The effect of abiraterone acetate on dsDNA was shown, which was registered by alteration the intensity of electrochemical oxidation of purine heterocyclic bases guanine and adenine using screen printed electrodes modified with functionalized carbon nanotubes. The binding constants (Kb) of the [dsDNA-AA] complex for guanine and adenine were 1.63×104 M-1 and 1.93×104 M-1, respectively. The electrochemical coefficients of the toxic effect were calculated as the ratio of the intensity of the electrochemical oxidation signals of guanine and adenine, in the presence of abiraterone acetate to the intensity of the electrooxidation signals of these nucleobases without drug (%). At concentrations of abiraterone acetate exceeding 60 μM, a decrease in the currents of electrochemical oxidation of guanine and adenine by 50% or more is recorded. Based on the analysis of electrochemical parameters and values of binding constants, an assumption was made about the mechanism of interaction of abiraterone acetate with DNA, mainly due to the formation of hydrogen bonds with the minor groove. An electrochemical DNA biosensor was first used to study the mechanism of interaction of the anticancer drug abiraterone acetate with dsDNA.
Article Details
References
- Bolat, G. (2020) Investigation of poly(CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan. Microchemical Journal, 159, 105426. DOI
- Hua, Y., Jiaming, M., Dachao, L., Ridong, W. (2022) DNA-based biosensors for the biochemical analysis: a review. Biosensors, 12, 183. DOI
- Rehman, S.U., Sarwar, T., Husain, M.A., Ishqi, H.M., Tabish, M. (2015) Studying non-covalent drug–DNA interactions. Arch. Biochem. Biophys., 576, 49–60. DOI
- Eckel, R., Ros, R., Ros, A., Wilking, S.D., Sewald, N., Anselmetti, D. (2003) Identification of binding mechanisms in single molecule–DNA complexes. Biophys. J., 85, 1968–1973. DOI
- Das, S., Kumar, G.S. (2008) Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: Model for intercalative drug–DNA binding. J. Mol. Struct., 63, 87256. DOI
- Brabec, V., Kasparkova, J. (2018) Ruthenium coordination compounds of biological and biomedical significance DNA. Binding Agents. Coord. Chem. Rev., 376, 75–94. DOI
- Qais, F.A., Abdullah, K.M., Alam, M.M., Naseem, I., Ahmad, I. (2017) Interaction of capsaicin with calf thymus DNA: a multi-spectroscopic and molecular modelling study. Int. J. Biol. Macromol., 97, 392–402. DOI
- Kalanur S.S., Katrahalli U., Seetharamappa J. (2009) Electrochemical studies and spectroscopic investigations on the interaction of an anticancer drug with DNA and their analytical applications. J. Electroanal. Chem., 636, 93–100. DOI
- Eckert, K.A., Kunkel, T.A. (1991) DNA polymerase fidelity and the polymerase chain reaction. PCR methods and applications , 17, 24. DOI
- Hasanzadeh, M., Shadjou, N. (2016) Pharmacogenomic study using bio- and nanobioelectrochemistry: drug–DNA interaction. Mater. Sci. Eng. C, 61, 1002–1017. DOI
- Sigolaeva, L.V., Bulko, T.V., Kozin, M.S., Zhang, W., Köhler, M., Romanenko, I., Yuan, J., Schacher, F.H., Pergushov, D.V., Shumyantseva, V.V. (2019) Long-term stable poly(ionic liquid)/MWCNTs inks enable enhanced surface modification for electrooxidative detection and quantification of dsDNA. Polymer, 103,168 95. DOI
- Ronkainen, N.J., Halsall, H.B., Heineman, W.R. (2010) Electrochemical biosensors. Chem. Soc. Rev., 39, 1747–1763. DOI
- Teles, F.R.R., Fonseca, L.P. (2008) Trends in DNA biosensors. Talanta, 77, 606–623. DOI
- Trotter, M., Borst, N., Thewes, R., Stetten, F. (2020) Review: electrochemical DNA sensing – principles, commercial systems, and applications. Biosens. Bioelectron, 154, 112069. DOI
- Blair, E.O., Corrigan, D.K. (2019) A review of microfabricated electrochemical biosensors for DNA detection. Biosens. Bioelectron., 134, 57–67. DOI
- Girousi, S.Th., Gherghi, I.Ch., Karava, M.K. (2004) DNA-modified carbon paste electrode applied to the study of interaction between Rifampicin (RIF) and DNA in solution and at the electrode surface. J. Pharmaceutical and Biomedical Analysis, 36, 851-858. DOI
- Muti, M. (2018) Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant. Talanta., 178, 1033–1039. DOI
- Alex, A.B., Pal, S.K., Agarwal, N. (2016) CYP17 inhibitors in prostate cancer: latest evidence and clinical potential. Ther. Adv. Med. Oncol., 8, 267-275. DOI
- Yoshimoto, F.K., Auchus, R.J. (2015) The diverse chemistry of cytochrome P450 17A1 (P450c17, CYP17A1). J. Steroid Biochem. Mol. Biol., 151, 52-65. DOI
- Malikova, J., Brixius-Anderko, S., Udhane, S.S., Parween, S., Dick, B., Bernhardt, R., Pandey, A.V. (2017) CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. J. Steroid Biochem. Mol. Biol., 174, 192-200. DOI
- He, Y., Lu, J., Ye, Z., Hao, S., Wang, L, Kohli, M., Tindall, D.J., Li, B., Zhu, R., Wang, L. (2018) Androgen receptor splice variants bind to constitutively open chromatin and promote abiraterone-resistant growth of prostate cancer. Nucleic Acids Res., 46(4), 1895–1911. DOI
- Salvador, J.A., Pinto, R.M., Silvestre, S.M (2013) Steroidal 5α-reductase and 17α-hydroxylase/17,20-lyase (CYP17) inhibitors useful in the treatment of prostatic diseases. J. Steroid Biochem. Mol. Biol., 137, 199-222. DOI
- Gordevičius, J., Kriščiūnas, A., Groot, D.E., Yip, S.M., Susic, M., Kwan, A., Kustra, R., Joshua, A.M., Chi, K.N., Petronis, A. (2018) Cell-free DNA modification dynamics in abiraterone acetate-treated prostate cancer patients. Clin. Cancer. Res., 24(14), 3317–3324. DOI
- Pezaro, C.J., Mukherji, D., De Bono, J.S. (2012) Abiraterone acetate: redefining hormone treatment for advanced prostate cancer. Drug Discov. Today, 17(5–6), 221–226. DOI
- Aliakbarinodehi, N., Micheli, G.D., Carrara, S. (2016) Enzymatic and nonenzymatic electrochemical interaction of abiraterone (antiprostate cancer drug) with multiwalled carbon nanotube bioelectrodes. Anal. Chem, 88, 9347−9350 DOI
- Wani, T.A., Alsaif, N., Bakheit, A.H., Zargar, S., Al-Mehizia, A.A., Khan, A.A. (2020) Interaction of an abiraterone with calf thymus DNA: investigation with spectroscopic technique and modelling studies. Bioorg Chem., 100, 103957. DOI
- Carrara, S., Cavallini, A., Erokhin, V., Micheli, G.D. (2011) Multi-panel drugs detection in human serum for personalized therapy. Biosensors and Bioelectronics, 26, 3914–3919. DOI
- Glebova, N.V., Nechitaіlov, A.A. (2010) Functionalization of the surface of multiwalled carbon nanotubes. Technical Physics Letters, 36(10), 878-881 DOI
- Randles, J.E.B. (1948) A cathode-ray polarograph. Part II - The current-voltage curves. Trans Faraday Soc., 44, 327. DOI
- Sevcik, A. (1948) Oscillographic polarography with periodical triangular voltage. Collect Czech ChemCommun, 13, 349. DOI
- Mohammadi, A., Moghaddam, A.B., Alikhani, E., Eilkhanizadeh, K., Mozaffari, S. (2013) Electrochemical quantification of fluoxetine in pharmaceutical formulation using carbon nanoparticles. Micro & Nano Letters, 8, 853-857 DOI
- Ferapontova, E.E. (2018) DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. Annual review of analytical chemistry, 11(1), 197–218. DOI
- Bagni, G., Osella, D., Sturchio, E., Mascini, M. (2006) Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Anal. Chim. Acta., 81–89, 573-574. DOI
- Shumyantseva, V.V., Bulko, T.V., Tikhonova, E.G., Sanzhakov, M.A., Kuzikov, A.V., Masamrekh, R.A., Pergushov, D.V., Schacher, F.H., Sigolaeva, L.V. (2021) Electrochemical studies of the interaction of rifampicin and nanosome/rifampicin with dsDNA. Bioelectrochemistry, 140, 107736. DOI
- Acharya, M., Bernard, A., Gonzalez, M., Jiao, J., De Vries, R., Tran, N. (2012) Open-label, phase I, pharmacokinetic studies of abiraterone acetate in healthy men. Chemother. Pharmacol., 69, 1583−1590.
- Bernard, A., Vaccaro, N., Acharya, M., Jiao, J., Monbaliu, J., Vries, R. D., Stieltje,s H., Tran, M. Y., Chien, C. (2015) Impact on abiraterone pharmacokinetics and safety: open‐label drug–drug interaction studies with ketoconazole and rifampicin. Clinical Pharmacology in Drug Development, 4(1) 63-73. DOI
- Nafisi, S., Saboury, A.A., Keramat, N., Neault, J.F., Tajmir-Riahi, H.A. (2007) Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J. Mol. Struct., 827, 35–43. DOI
- Sirajuddin, M., Ali, S., Badshah, A. (2013) Drug–DNA interactions and their study by UV–vis, fluorescence spectroscopies and cyclic voltammetry. J. Photochem. Photobiol. B: Biol., 124, 1–19. DOI
- DeDogan-Topal, B., Bozal-Palabiyik, B., Ozkan, S.A., Uslu, B. (2014) Investigation of anticancer drug lapatinib and its interaction with dsDNA by electrochemical and spectroscopic techniques. Sens. Actuators B Chem., 194 185–194. DOI
- Temerk, Y., Ibrahim, M., Ibrahim, H., Kotb, M. (2016) Interactions of an anticancer drug lomustine with single and double stranded DNA at physiological conditions analysed by electrochemical and spectroscopic methods. J. Electroanal. Chem., 769, 62–71. DOI
- Yazan, Z., Bayraktepe, D.E., Dinç, E. (2020) Four-way parallel factor analysis of voltammetric four-way dataset for monitoring the etoposide-DNA interaction with its binding constant determination. Bioelectrochemistry, 134, 107525. DOI