Obtaining and Properties Study of Human Granulocyte-macrophage Colony-stimulating Factor in a Vehicle for Drug Delivery

Main Article Content

T.I. Esina
G.G. Shimina
E.A. Volosnikova
S.G. Gamaley
E.D. Danilenko

Abstract

Granulocyte-macrophage colony stimulating factor (GM-CSF) is a cytokine that stimulates the growth and development of granulocyte and macrophage progenitor cells. It also increases the activity of mature neutrophils, monocytes, and eosinophils. The preparations of recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF) are used to treat the diseases associated with myelosuppression, such as neutropenia of different etiologies, chronic infections, etc. One problem in the widespread use of GM-CSF is its instability in biological fluids, which leads to a short half-life and reduced biological activity. To solve this problem, a method has been developed to incorporate rhGM-CSF into a drug delivery vehicle based on polyglucin. It has been found that the conjugation of rhGM-CSF and polyglucin enhances the resistance of the protein against degradation by trypsin. The dosage form of rhGM-CSF incorporated into the drug delivery vehicle increased the number of segmented neutrophils in CBA mice with cyclophosphamide-induced myelosuppression to a similar extent as the initial rhGM-CSF preparation (300% and 350%, respectively, compared with the control level, 5 days after cyclophosphamide administration). Additionally, it contributed to a more rapid recovery of the total number of bone marrow karyocytes. Thus, a preparation containing a conjugate of rhGM-CSF and polyglucin exerts a more significant effect on activating bone marrow myelopoiesis than the unmodified protein.

Article Details

How to Cite
Esina, T., Shimina, G., Volosnikova, E., Gamaley, S., & Danilenko, E. (2024). Obtaining and Properties Study of Human Granulocyte-macrophage Colony-stimulating Factor in a Vehicle for Drug Delivery. Biomedical Chemistry: Research and Methods, 7(4), e00240. https://doi.org/10.18097/BMCRM00240
Section
EXPERIMENTAL RESEARCH

References

  1. Hong, W.K., Kufe, D.W., Hait ,W., Pollock, R.E. (2010) Holland-frei cancer medicine, 8th ed. Shelton CT: PMPH-USA Ltd., 2048 p.
  2. Dale, D.C., Crawford, J., Klippel, Z., Reiner, M., Osslund, T., Fan, E., Morrow, P.K., Allcott, K., Lyman, G.H. (2018) A systematic literature review of the efficacy, effectiveness, and safety of filgrastim. Support Care Cancer, 26(1), 7-20. DOI
  3. Rizzo, A. (2021) Use of granulocyte colony-stimulating factor for adult cancer patients: current issues and future directions. Future Oncol., 17(26), 3411-3413. DOI
  4. Pershko, V.A., Khalimov, Y.S., Gayduk, S.V. (2017) Effectiveness of colony-stimulating factors in the treatment of bone marrow syndrome of acute radiation sickness. Bulletin of the Russian Military Medical Academy, 19(3), 195-198.
  5. Alpatova, N.A., Avdeeva, Zh.I., Nikitina, T.N., Medunicyn, N.V. (2019) Adjuvant properties of cytokines in vaccination. Khimiko-Farmatsevticheskii Zhurnal, 53(11), 3-8. DOI
  6. Lian, J., Kuang, W., Jia, H., Lu, Y., Zhang, X., Ye, C., Gu, J., Lv, Y., Yu, J., Zhang, Y., Lu, X., Zhao, Y., Yang, D., Wang, K., Zhao, P., Yu, Y., Bai, L., Zhang, J., Zhang, X., Yang, Y. (2022) Pegylated interferon-α-2b combined with tenofovir disoproxil fumarate, granulocyte-macrophage colony-stimulating factor, and hepatitis B vaccine treatment for naïve HBeAg-positive chronic hepatitis B patients: A prospective, multicenter, randomized controlled study. J. Med. Virol., 94(11), 5475-5483. DOI
  7. Cocker, A.T.H., Greathead, L., Herasimtschuk, A.A., Mandalia, S., Kelleher, P., Imami, N. (2019) Short Communication: Therapeutic Immunization Benefits Mucosal-Associated Invariant T Cell Recovery in Contrast to Interleukin-2, Granulocyte-Macrophage Colony-Stimulating Factor, and Recombinant Human Growth Hormone Addition in HIV-1+ Treated Patients: Individual Case Reports from Phase I Trial. AIDS Res. Hum. Retroviruses, 35(3), 306-309. DOI
  8. Ramon Ehrnandes, K.A., Kastro Odio, F.R., Saes Martine,s V.M., Paes Mejreles, R., Fernandes Sanches, E. (2011) PEG dendrimer with four branches for conjugation with proteins and peptides, Russian Patent No. 2409389. Retrieved from https://patentimages.storage.googleapis.com/ef/bf/da/a6a67beb24256c/RU2409389C2.pdf
  9. Puchkov, I.A., Bairamashvili, D.I., Shvec, V.I. (2014) Pegylation, as method of production prolonged forms of biopharmaceutical drugs (pegylated granulocyte colony-stimulating factor as case of study). Fine Chemical Technologies, 4(2), 3-31.
  10. Martynov, A.I., Sankov, M.N., Gasanov, V. Ali ogly, Sheval'e, A.F., Vlasov, A.A., Shilovskij I.P. (2018) Method for obtaining a hybrid protein containing a fused protein analogue of an interferon gamma conjugated with oligosaccharide, Russian Patent No. 2656140. Retrieved from https://patents.s3.yandex.net/RU2656140C2_20180531.pdf
  11. Pozdnyakova, S.V. (2001) Vliyanie dekstrana i polivinilpirralidona na funkcional'nuyu aktivnost' fagocitiruyushhix kletochnyx sistem. Avtoref. diss. kand. nauk, Novosibirsk State Medical Academy, Novosibirsk.
  12. Anisimova, N.Yu., Ustyuzhanina, N.E., Bilan, M.I., Donenko, F.V., Ushakova, N.A., Kiselevskiy, M.V., Nifantiev, N.E. (2019) Influence of modified fucoidan and related sulfated oligosaccharides on hematopoiesis in cyclophosphamide-induced mice. Mar. Drugs, 16(9), 333. DOI
  13. Mitroulis, I., Ruppova, K., Wang, B., Chen, L-S., Grzybek, M., Grinenko, T., Eugster, A., Troullinaki, M., Palladini, A., Kourtzelis, I., Chatzigeorgionu, A., Schlitzer, A., Beyer, M., Joosten, L.A.B., Isermann, B., Leshe, M., Petzold, A., Simons, K., Henry, I., Dahl, A., Schultze, J.I., Wielockx, B., Zamboni, N., Mirtschink, P., Coskun, U., Hajishengallis, G., Netea, N., Chavakis, T. (2018) Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell, 172(1-2), 147-161. DOI
  14. Shimina, G.G., Bateneva, A.V., Gamalej, S.G., Esina, T.I., Tereshhenko, T.G., Danilenko, E.D. (2020) Study on hemostimulating properties of granulocyte-macrophage colony stimulating factor. BIOpreparations. Prevention, Diagnosis, Treatment, 20(4), 268 – 276.
  15. Esina, T.I., Volosnikova, E.A., Shimina, G.G., Gamaley, S G., Motovilova, N.G. Danilenko, E.D. (2023) Development of a dosage form of granulocyte-macrophage colony-stimulating factor and study of its biological properties. Russian Journal of Biopharmaceuticals, 15(5), 17-23. DOI
  16. Borgoyakova, M.B., Karpenko, L.I., Rudomyotov, A.P., Shan'shin, D.V., Isaeva, A.A., Nesmeyanova, V.S., Volkova, N.V., Belen'kaya, S.V., Murashkin, D.E., Shherbakov, D.N., Volosnikova, E.A., Starostina, E.V., Orlova, L.A., Danil'chenko, N.V., Zajkovskaya, A.V., P'yankov, O.V., Il'ichyov, A.A. (2021) Immunogenic Properties of the DNA Construct Encoding the Receptor-Binding Domain of the SARS-CoV-2 Spike Protein. Mol. Biol. (Mosk), 55(6), 987-998. DOI
  17. Patchen, M.L., Liang, J., Vaudrain, T., Martin, T., Medican, D., Zhong, S., Stewart, M., Quesenberry, P.J. (1998) Mobilization of peripheral blood progenitor cells by Betafectin PGG-Glucan alone and in combination with granulocyte colony-stimulating factor. Stem Cells, 16(3), 208-217. DOI
  18. Harada, T., Kawaminami, H., Miura, N.N., Adachi, Y., Nakajima, M., Yadomae, T., Ohno, N. (2006) Mechanism of enhanced hematopoietic response by soluble beta-glucan SCG in cyclophosphamide-treated mice. Microbiol. Immunol., 50(9), 687-700. DOI
  19. Jing, W., Roberts, J.W., Green, D.E., Almond, A., DeAngelis, P.L. (2017) Synthesis and characterization of heparosan-granulocyte-colony stimulating factor conjugates: a natural sugar-based drug delivery system to treat neutropenia. Glycobiology, 27(11), 1052-1061. DOI