Подготовка электрохимических биосенсорных систем для анализа биообъектов: обоснованный выбор модификаций рабочей поверхности электродов для проведения исследований в режиме «смарт-электродов»

##plugins.themes.bootstrap3.article.main##

В.В. Шумянцева
Л.Е. Агафонова
Т.В. Булко
А.В. Кузиков
Р.А. Масамрех

Аннотация

Рассмотрен электрохимический метод регистрации биообъектов и их функциональной активности, основанный на реакции электроокисления/электровосстановления молекул. Описаны материалы и комбинированные системы для модификации электродов, а также методы и протоколы получения химически модифицированных электродов для повышения чувствительности регистрации протекания электрохимических реакций на поверхности электродов. Приведены методики получения электродов, модифицированных синтетическим липидоподобным соединением дидодецилдиметиламмония бромидом, наночастицами золота и серебра, одномерными наноструктурами на основе соединений свинца, наночастицами оксида титана, дисперсиями углеродных нанотрубок в органических растворителях, в полимерах различного строения. Показано, что функционализация рабочей электродной поверхности позволяет повысить чувствительность электрохимической биосенсорной системы и снизить предел определяемых концентраций. Результаты представлены в виде алгоритма, позволяющего осуществить выбор типа модифицированного электрода для проведения соответствующей электрохимической реакции и анализа биомолекулы.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Шумянцева V., Агафонова L., Булко T., Кузиков A., & Масамрех R. (2020). Подготовка электрохимических биосенсорных систем для анализа биообъектов: обоснованный выбор модификаций рабочей поверхности электродов для проведения исследований в режиме «смарт-электродов». Biomedical Chemistry: Research and Methods, 3(1), e00119. https://doi.org/10.18097/BMCRM00119
Раздел
ПРОТОКОЛЫ ЭКСПЕРИМЕНТОВ, ПОЛЕЗНЫЕ МОДЕЛИ, ПРОГРАММЫ И СЕРВИСЫ

Библиографические ссылки

  1. Akhtera, S., Basiruna, W., Aliasa, Y., Johanb, M., Bagherid, S., Shalauddinb, M., Ladane, M., Anuar, N. (2018) Enhanced amperometric detection of paracetamol by immobilized cobalt ion on functionalized MWCNTs - Chitosan thin film. Analytical Biochemistry, 551, 29–36. DOI
  2. Shaw, L., Dennany, L. (2017) Applications of electrochemical sensors: Forensic drug analysis. Current Opinion in Electrochemistry, 3, 23–28. DOI
  3. Lima, H., da Silva, J., de Oliveira Farias, E., Teixeira, P., Eiras, C., Nunes, L. (2018) Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosensors and Bioelectronics, 108, 27–37. DOI
  4. Rahi, A., Karimian, K., Heli, H. (2016) Nanostructured materials in electroanalysis of pharmaceuticals. Analytical Biochemistry, 497, 39-47. DOI
  5. Cernat, A., Tertis¸ M., Sandulescu, R. (2015) Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Analytica Chimica Acta, 886, 16-28. DOI
  6. Arduini, F., Micheli, L., Moscone, D., Palleschi, G., Piermarini, S., Francesco Ricci, F., Volpe, G. (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Anal. Chem., 79, 114-126. DOI
  7. Li, M., Li, D.-W., Xiu, G., Long, Y.-T. (2017) Applications of screen-printed electrodes in current environmental analysis. Curr. Opin. Electrochem., 3, 137-143. DOI
  8. Kuzikov, A.V., Bulko, T.V., Koroleva, P.I., Masamrekh, R.A., Babkina, S.S., Gilep, A.A., Shumyantseva, V.V. (2020) Cytochrome P450 3A4 as enzyme for drug biotransformation: the role of sensor systems modifications in electrocatalysis and electroanalysis. Biomeditsinskaya Khimiya, 66(1), 64-70. DOI
  9. Shumyantseva, V.V., Bulko, T.V., Misharin, A.Yu., Archakov, A.I. (2011) Screening of Potential Substrates or Inhibitors of Cytochrome P450 17A1 (CYP17A1) by Electrochemical Methods. Biomeditsinskaya Khimiya, 57(4), 402-409. DOI
  10. Shumyantseva, V.V., Bulko, T.V., Kuznetsova, G.P., Samenkova, N.F., and Archakov, A.I. (2009) Electrochemistry of cytochromes P450: Analysis of current-voltage characteristics of electrodes with immobilized cytochromes P450 for the screening of substrates and inhibitors. Biochemistry, 74, 438–444. DOI
  11. Sigolaeva, L.V., Bulko, T.V., Kozin, M.S., Zhang, W., Köhler, M., Romanenko, I., Yuan, J., Schacher, F.H., Pergushov, D.V., Shumyantseva, V.V. (2019) Long-term stable poly(ionic liquid)/MWCNTs inks enable enhanced surface modification for electrooxidative detection and quantification of dsDNA. Polymer, 168, 95–103. DOI
  12. Shumyantseva, V.V., Sigolaeva, L.V., Agafonova, L.E., Bulko, T.V., Pergushov, D.V., Schacher, F.H., Archakov, A.I. (2015) Facilitated biosensing via direct electron transfer of myoglobin integrated into diblock copolymer/multi-walled carbon nanotube nanocomposites. J. Mater. Chem. B, 3(27) 5467–5477. DOI
  13. Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Pergushov, D.V., Schacher, F.H., Sigolaeva, L.V. (2020) Electrochemical fingerprint of cytochrome c on a MWCNT/polymer nanocomposite electrode. Mendeleev Communications, in press
  14. Shumkov, A. A., Suprun, E. V., Shatinina, S. Z., Lisitsa, A. V., Shumyantseva, V. V., Archakov, A. I. (2013) Gold and Silver Nanoparticles for Electrochemical Detection of Cardiac Troponin I based on Striping Voltammetry. BioNanoScience, 2(3), 216-222. DOI
  15. Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Archakov, A.I. (2018) Analysis of L-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2). Amino Acids., 50, 823-829. DOI
  16. Tong, H., Zhu, Y-J., Yang, L.X., Zhang, L. (2006) Lead Chalcogenide Nanotubes Synthesized by Biomolecule-Assisted Self-Assembly of Nanocrystals at Room Temperature. Angew. Chem. Int. Ed., 45, 7739-7742. DOI
  17. Shumyantseva, V. V., Bulko, T. V., Suprun, E. V. and Archakov, A. I. (2013) Electrochemical Sensor Systems Based on One_Dimensional (1D) Nanostructures for Analysis of Bioaffinity Interactions. Biomeditsinskaya Khimiya, 59(2), 209–218. DOI
  18. Guto, P.M., Rusling, J.F. (2006) Myoglobin retains iron heme and near-native conformation in DDAB films prepared from pH 5 to 7 dispersions. Electrochemistry Communications, 8, 455–459. DOI
  19. Shumyantseva, V.V., Suprun, E.V., Bulko, T.V., Dobrynina, O.V., Archakov, A.I. (2010) Sensor Systems for Medical Application Based on Hemoproteins and Nanocomposite Materials. Biomeditsinskaya Khimiya, 56 (1), 55–71. DOI
  20. Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Chalenko, Y.M., Vagin, M.Yu., Rudakov, Yu.O., Shatskaya, M.A., Archakov, A.I. (2011) Electrochemical investigations of cytochrome P450. Biochimica et Biophysica Acta - Proteins and Proteomics. 1814(1), 94–101. DOI
  21. Kuzikov, A.V., Dugin, N.O., Stulov, S.V., Shcherbinin, D.S., Zharkova, M.S., Veselovsky, A.V., Shumyantseva, V.V., Misharin, A.Y., Tkachev, Y.V., Timofeev, V.P., (2014) Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17a-hydroxylase/17,20-lyase (CYP17A1) inhibitors, Steroids, 88, 66–71. DOI
  22. Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Kuzikov, A.V., Agafonova, L.E., Archakov, A. I. (2015) Electrochemical Methods in Biomedical Studies. Biomeditsinskaya Khimiya, 61(2),188–202. DOI
  23. Shumyantseva V.V., Bulko T.V, Rudakov Yu.O., Kuznetsova G.P., Samenkova N.F., Lisitsa A.V., Karuzina I.I, Archakov A. I. (2007) Electrochemical properties of cytochroms P450 using nanostructured electrodes: Direct electron transfer and electro catalysis. J. Inorg. Biochem., 101, 859-865. DOI
  24. Han, X., Cheng, W., Zhang, Z., Dong, S., and Wang, E. (2002) Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles. Biochem. Biophys. Acta, 1556 (2-3), 273-277. DOI
  25. Shumyantseva, V.V., Makhova, A.A., Bulko, T.V., Kuzikov, A.V., Shich, E.V., Kukes, V., Archakov, A.I. (2015) Electrocatalytic cycle of P450 cytochromes: the protective and stimulating roles of antioxidants. RSC Advances, 5(87), 71306-71313. DOI
  26. Shumyantseva, V.V., Bulko, T.V., Vagin, M.Yu., Suprun, E.V., Archakov, A. I. (2010) Electrochemical Immunoanalysis of Cardiac Myoglobin. Biomeditsinskaya Khimiya, 56(6), 758–768. DOI
  27. Suprun, E.V., Shilovskaya, A.L., Lisitsa, A.V., Bulko, T.V. Shumyantseva, V.V., Archakov, A.I. (2011) Electrochemical Immunosensor Based on Metal Nanoparticles for Cardiac Myoglobin Detection in Human Blood Plasma. Electroanalysis, 23(5), 1051 – 1057. DOI
  28. Shangguan, L., Zhao, Y., Mi, L., Jiang, L, Liu, S. (2016) Direct electrochemistry and electrocatalysis of cytochrome P450s immobilized on gold/graphene-based nanocomposites. J. Electroanal. Chem., 772, 46-51. DOI
  29. Suprun, E.V., Bulko, T.V., Lisitsa, A.V., Gnedenko, O.V., Ivanov, A.S., Shumyantseva, V.V., Archakov, A.I. (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosensors and Bioelectronics, 25 (7), 1694–1698. DOI
  30. Shumyantseva, V.V., Suprun, E.V., Bulko, T.V., Archakov, A.I. (2009) Electrochemical Methods for the Investigation of Bioaffinity Interactions Based on Gold Nanoparticles Modified Sensors. Electroanalysis, 21(3-5), 530 – 535. DOI
  31. Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Konyakhina, A.Yu. Romanenko, I., Max, J.B., Köohler, M., Gilep, A.A., Usanov, S.A., Pergushov, D.V., Schacher, F.H., Sigolaeva, L.V. (2020) All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochimica Acta, 336, 135579. DOI
  32. Lin, Y-W. (2018) Structure and function of heme proteins regulated by diverse post-translational modifications. Arch. Biochem. Biophys., 641, 1-30. DOI