Подготовка электрохимических биосенсорных систем для анализа биообъектов: обоснованный выбор модификаций рабочей поверхности электродов для проведения исследований в режиме «смарт-электродов»
##plugins.themes.bootstrap3.article.main##
Аннотация
Рассмотрен электрохимический метод регистрации биообъектов и их функциональной активности, основанный на реакции электроокисления/электровосстановления молекул. Описаны материалы и комбинированные системы для модификации электродов, а также методы и протоколы получения химически модифицированных электродов для повышения чувствительности регистрации протекания электрохимических реакций на поверхности электродов. Приведены методики получения электродов, модифицированных синтетическим липидоподобным соединением дидодецилдиметиламмония бромидом, наночастицами золота и серебра, одномерными наноструктурами на основе соединений свинца, наночастицами оксида титана, дисперсиями углеродных нанотрубок в органических растворителях, в полимерах различного строения. Показано, что функционализация рабочей электродной поверхности позволяет повысить чувствительность электрохимической биосенсорной системы и снизить предел определяемых концентраций. Результаты представлены в виде алгоритма, позволяющего осуществить выбор типа модифицированного электрода для проведения соответствующей электрохимической реакции и анализа биомолекулы.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Akhtera, S., Basiruna, W., Aliasa, Y., Johanb, M., Bagherid, S., Shalauddinb, M., Ladane, M., Anuar, N. (2018) Enhanced amperometric detection of paracetamol by immobilized cobalt ion on functionalized MWCNTs - Chitosan thin film. Analytical Biochemistry, 551, 29–36. DOI
- Shaw, L., Dennany, L. (2017) Applications of electrochemical sensors: Forensic drug analysis. Current Opinion in Electrochemistry, 3, 23–28. DOI
- Lima, H., da Silva, J., de Oliveira Farias, E., Teixeira, P., Eiras, C., Nunes, L. (2018) Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosensors and Bioelectronics, 108, 27–37. DOI
- Rahi, A., Karimian, K., Heli, H. (2016) Nanostructured materials in electroanalysis of pharmaceuticals. Analytical Biochemistry, 497, 39-47. DOI
- Cernat, A., Tertis¸ M., Sandulescu, R. (2015) Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Analytica Chimica Acta, 886, 16-28. DOI
- Arduini, F., Micheli, L., Moscone, D., Palleschi, G., Piermarini, S., Francesco Ricci, F., Volpe, G. (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Anal. Chem., 79, 114-126. DOI
- Li, M., Li, D.-W., Xiu, G., Long, Y.-T. (2017) Applications of screen-printed electrodes in current environmental analysis. Curr. Opin. Electrochem., 3, 137-143. DOI
- Kuzikov, A.V., Bulko, T.V., Koroleva, P.I., Masamrekh, R.A., Babkina, S.S., Gilep, A.A., Shumyantseva, V.V. (2020) Cytochrome P450 3A4 as enzyme for drug biotransformation: the role of sensor systems modifications in electrocatalysis and electroanalysis. Biomeditsinskaya Khimiya, 66(1), 64-70. DOI
- Shumyantseva, V.V., Bulko, T.V., Misharin, A.Yu., Archakov, A.I. (2011) Screening of Potential Substrates or Inhibitors of Cytochrome P450 17A1 (CYP17A1) by Electrochemical Methods. Biomeditsinskaya Khimiya, 57(4), 402-409. DOI
- Shumyantseva, V.V., Bulko, T.V., Kuznetsova, G.P., Samenkova, N.F., and Archakov, A.I. (2009) Electrochemistry of cytochromes P450: Analysis of current-voltage characteristics of electrodes with immobilized cytochromes P450 for the screening of substrates and inhibitors. Biochemistry, 74, 438–444. DOI
- Sigolaeva, L.V., Bulko, T.V., Kozin, M.S., Zhang, W., Köhler, M., Romanenko, I., Yuan, J., Schacher, F.H., Pergushov, D.V., Shumyantseva, V.V. (2019) Long-term stable poly(ionic liquid)/MWCNTs inks enable enhanced surface modification for electrooxidative detection and quantification of dsDNA. Polymer, 168, 95–103. DOI
- Shumyantseva, V.V., Sigolaeva, L.V., Agafonova, L.E., Bulko, T.V., Pergushov, D.V., Schacher, F.H., Archakov, A.I. (2015) Facilitated biosensing via direct electron transfer of myoglobin integrated into diblock copolymer/multi-walled carbon nanotube nanocomposites. J. Mater. Chem. B, 3(27) 5467–5477. DOI
- Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Pergushov, D.V., Schacher, F.H., Sigolaeva, L.V. (2020) Electrochemical fingerprint of cytochrome c on a MWCNT/polymer nanocomposite electrode. Mendeleev Communications, in press
- Shumkov, A. A., Suprun, E. V., Shatinina, S. Z., Lisitsa, A. V., Shumyantseva, V. V., Archakov, A. I. (2013) Gold and Silver Nanoparticles for Electrochemical Detection of Cardiac Troponin I based on Striping Voltammetry. BioNanoScience, 2(3), 216-222. DOI
- Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Archakov, A.I. (2018) Analysis of L-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2). Amino Acids., 50, 823-829. DOI
- Tong, H., Zhu, Y-J., Yang, L.X., Zhang, L. (2006) Lead Chalcogenide Nanotubes Synthesized by Biomolecule-Assisted Self-Assembly of Nanocrystals at Room Temperature. Angew. Chem. Int. Ed., 45, 7739-7742. DOI
- Shumyantseva, V. V., Bulko, T. V., Suprun, E. V. and Archakov, A. I. (2013) Electrochemical Sensor Systems Based on One_Dimensional (1D) Nanostructures for Analysis of Bioaffinity Interactions. Biomeditsinskaya Khimiya, 59(2), 209–218. DOI
- Guto, P.M., Rusling, J.F. (2006) Myoglobin retains iron heme and near-native conformation in DDAB films prepared from pH 5 to 7 dispersions. Electrochemistry Communications, 8, 455–459. DOI
- Shumyantseva, V.V., Suprun, E.V., Bulko, T.V., Dobrynina, O.V., Archakov, A.I. (2010) Sensor Systems for Medical Application Based on Hemoproteins and Nanocomposite Materials. Biomeditsinskaya Khimiya, 56 (1), 55–71. DOI
- Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Chalenko, Y.M., Vagin, M.Yu., Rudakov, Yu.O., Shatskaya, M.A., Archakov, A.I. (2011) Electrochemical investigations of cytochrome P450. Biochimica et Biophysica Acta - Proteins and Proteomics. 1814(1), 94–101. DOI
- Kuzikov, A.V., Dugin, N.O., Stulov, S.V., Shcherbinin, D.S., Zharkova, M.S., Veselovsky, A.V., Shumyantseva, V.V., Misharin, A.Y., Tkachev, Y.V., Timofeev, V.P., (2014) Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17a-hydroxylase/17,20-lyase (CYP17A1) inhibitors, Steroids, 88, 66–71. DOI
- Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Kuzikov, A.V., Agafonova, L.E., Archakov, A. I. (2015) Electrochemical Methods in Biomedical Studies. Biomeditsinskaya Khimiya, 61(2),188–202. DOI
- Shumyantseva V.V., Bulko T.V, Rudakov Yu.O., Kuznetsova G.P., Samenkova N.F., Lisitsa A.V., Karuzina I.I, Archakov A. I. (2007) Electrochemical properties of cytochroms P450 using nanostructured electrodes: Direct electron transfer and electro catalysis. J. Inorg. Biochem., 101, 859-865. DOI
- Han, X., Cheng, W., Zhang, Z., Dong, S., and Wang, E. (2002) Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles. Biochem. Biophys. Acta, 1556 (2-3), 273-277. DOI
- Shumyantseva, V.V., Makhova, A.A., Bulko, T.V., Kuzikov, A.V., Shich, E.V., Kukes, V., Archakov, A.I. (2015) Electrocatalytic cycle of P450 cytochromes: the protective and stimulating roles of antioxidants. RSC Advances, 5(87), 71306-71313. DOI
- Shumyantseva, V.V., Bulko, T.V., Vagin, M.Yu., Suprun, E.V., Archakov, A. I. (2010) Electrochemical Immunoanalysis of Cardiac Myoglobin. Biomeditsinskaya Khimiya, 56(6), 758–768. DOI
- Suprun, E.V., Shilovskaya, A.L., Lisitsa, A.V., Bulko, T.V. Shumyantseva, V.V., Archakov, A.I. (2011) Electrochemical Immunosensor Based on Metal Nanoparticles for Cardiac Myoglobin Detection in Human Blood Plasma. Electroanalysis, 23(5), 1051 – 1057. DOI
- Shangguan, L., Zhao, Y., Mi, L., Jiang, L, Liu, S. (2016) Direct electrochemistry and electrocatalysis of cytochrome P450s immobilized on gold/graphene-based nanocomposites. J. Electroanal. Chem., 772, 46-51. DOI
- Suprun, E.V., Bulko, T.V., Lisitsa, A.V., Gnedenko, O.V., Ivanov, A.S., Shumyantseva, V.V., Archakov, A.I. (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosensors and Bioelectronics, 25 (7), 1694–1698. DOI
- Shumyantseva, V.V., Suprun, E.V., Bulko, T.V., Archakov, A.I. (2009) Electrochemical Methods for the Investigation of Bioaffinity Interactions Based on Gold Nanoparticles Modified Sensors. Electroanalysis, 21(3-5), 530 – 535. DOI
- Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Konyakhina, A.Yu. Romanenko, I., Max, J.B., Köohler, M., Gilep, A.A., Usanov, S.A., Pergushov, D.V., Schacher, F.H., Sigolaeva, L.V. (2020) All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochimica Acta, 336, 135579. DOI
- Lin, Y-W. (2018) Structure and function of heme proteins regulated by diverse post-translational modifications. Arch. Biochem. Biophys., 641, 1-30. DOI