Восстановление сперматогенеза у мужчин мезенхимальными стволовыми клетками жировой ткани (литературный обзор)

##plugins.themes.bootstrap3.article.main##

А. Тамадон
М.Б. Аскаров
У. Жанбырбекулы
Р.А. Жанкина
Д.Т. Сайпиева
А.К. Ибрагимов
Б.Е. Кадырова
А. Ессенулы
Р.С. Шерханов
М.А. Сулейман

Аннотация

Стволовые клетки рассматриваются как новые многообещающие терапевтические агенты при лечении мужского бесплодия из-за их высокого потенциала дифференцировки и неограниченного предложения. В этом обзоре мы обобщили современные взгляды на применение мезенхимальных стволовых клеток в репродуктивной медицине.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Тамадон A., Аскаров M., Жанбырбекулы U., Жанкина R., Сайпиева D., Ибрагимов A., Кадырова B., Ессенулы A., Шерханов R., & Сулейман M. (2021). Восстановление сперматогенеза у мужчин мезенхимальными стволовыми клетками жировой ткани (литературный обзор). Biomedical Chemistry: Research and Methods, 4(1), e00141. https://doi.org/10.18097/BMCRM00141
Раздел
ОБЗОРЫ

Библиографические ссылки

  1. Yastrebov, A. P., Grebnev, D. Y., & Maklakova, I. Y. (2012). Experimental substantiation of implementation of combined transplantation of stem cells for correction of regeneration of fast renewing tissues after radiation damage. Vestn. Ural. Med. Akad. Nauki, 2, 39.
  2. Loseva, E. V. (2001). [Neurotransplantation of the fetal tissue and compensatory-restorative processes in the recipient nervous system]. Uspekhi Fiziologicheskikh Nauk, 32(1), 19–37.
  3. Gonzaga, V. F., Wenceslau, C. V., Lisboa, G. S., Frare, E. O., & Kerkis, I. (2017). Mesenchymal Stem Cell Benefits Observed in Bone Marrow Failure and Acquired Aplastic Anemia. Stem Cells International, 2017, 8076529. DOI
  4. Mikhailichenko V.Yu., Samarin S.A., Estrin S.I. Comparison of the Cardiomyogenic Potency of Human Amniotic Fluid and Bone Marrow Mesenchymal Stem Cells October 2019 International Journal of Stem Cells 12(3) DOI
  5. Noort, W. A., Kruisselbrink, A. B., in’t Anker, P. S., Kruger, M., van Bezooijen, R. L., de Paus, R. A., Heemskerk, M. H. M., Löwik, C. W. G. M., Falkenburg, J. H., Willemze, R., & Fibbe, W. E. (2002). Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Experimental Hematology, 30(8), 870–878. DOI
  6. Friedenstein, A. J., Chailakhyan, R. K., & Gerasimov, U. V. (1987). Bone marrow osteogenic stem cells: In vitro cultivation and transplantation in diffusion chambers. Cell and Tissue Kinetics, 20(3), 263–272. DOI
  7. Friedenstein, A. J., Gorskaja, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4(5), 267–274.
  8. Bianco, P., Costantini, M., Dearden, L. C., & Bonucci, E. (1988). Alkaline phosphatase positive precursors of adipocytes in the human bone marrow. British Journal of Haematology, 68(4), 401–403. DOI
  9. Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96(19), 10711–10716.
  10. Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M., Takahashi, T., Hori, S., Abe, H., Hata, J., Umezawa, A., & Ogawa, S. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. The Journal of Clinical Investigation, 103(5), 697–705. DOI
  11. Weiss, L. (1981). Haemopoiesis in mammalian bone marrow. Ciba Foundation Symposium, 84, 5–21. DOI
  12. van Servellen, A., & Oba, I. (2014). Stem cell research: Trends in and perspectives on the evolving international landscape. Research Trends.
  13. Krugljakov, P. V., Pohmatova, E., Klimovich, V. B., & Zarickij, A. Ju. (2006). Mezenhimnye stvolovye kletki i immunopatologicheskie sostojanija organizma. Geny i kletki, 1(3).
  14. Zhao, R. C., Liao, L., & Han, Q. (2004). Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy. The Journal of Laboratory and Clinical Medicine, 143(5), 284–291. DOI
  15. Jorgensen, C., Djouad, F., Apparailly, F., & Noël, D. (2003). Engineering mesenchymal stem cells for immunotherapy. Gene Therapy, 10(10), 928–931. DOI
  16. Cheng, L., Hammond, H., Ye, Z., Zhan, X., & Dravid, G. (2003). Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells (Dayton, Ohio), 21(2), 131–142. DOI
  17. Aqmasheh, S., Shamsasanjan, K., Akbarzadehlaleh, P., Pashoutan Sarvar, D., & Timari, H. (2017). Effects of Mesenchymal Stem Cell Derivatives on Hematopoiesis and Hematopoietic Stem Cells. Advanced Pharmaceutical Bulletin, 7(2), 165–177. DOI
  18. Boquest, A. C., Shahdadfar, A., Brinchmann, J. E., & Collas, P. (2006). Isolation of stromal stem cells from human adipose tissue. Methods in Molecular Biology (Clifton, N.J.), 325, 35–46. DOI
  19. Zachar, V., Rasmussen, J. G., & Fink, T. (2011). Isolation and growth of adipose tissue-derived stem cells. Methods in Molecular Biology (Clifton, N.J.), 698, 37–49. DOI
  20. Matsumoto, D., Shigeura, T., Sato, K., Inoue, K., Suga, H., Kato, H., Aoi, N., Murase, S., Gonda, K., & Yoshimura, K. (2007). Influences of preservation at various temperatures on liposuction aspirates. Plastic and Reconstructive Surgery, 120(6), 1510–1517. DOI
  21. Koç, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I., & Lazarus, H. M. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18(2), 307-307.
  22. Lindroos, B., Suuronen, R., & Miettinen, S. (2011). The potential of adipose stem cells in regenerative medicine. Stem Cell Reviews and Reports, 7(2), 269–291. DOI
  23. Terskih, V. V., & Kiseljova, E. V. (2010). Biologicheskie osobennosti i terapevticheskij potencial stromal'nyh kletok zhirovoj tkani. Obzor. Plasticheskaja Hirurgija i Kosmetologija, 4, 613–622.
  24. Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., Helder, M. N., Klein-Nulend, J., Schouten, T. E., Ritt, M. J. P. F., & van Milligen, F. J. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 8(2), 166–177. DOI
  25. Poznanski, W. J., Waheed, I., & Van, R. (1973). Human fat cell precursors. Morphologic and metabolic differentiation in culture. Laboratory Investigation; a Journal of Technical Methods and Pathology, 29(5), 570–576.
  26. Brown, S. A., Levi, B., Lequeux, C., Lequex, C., Wong, V. W., Mojallal, A., & Longaker, M. T. (2010). Basic science review on adipose tissue for clinicians. Plastic and Reconstructive Surgery, 126(6), 1936–1946. DOI
  27. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., & Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7(2), 211–228. DOI
  28. Dubois, S. G., Floyd, E. Z., Zvonic, S., Kilroy, G., Wu, X., Carling, S., Halvorsen, Y. D. C., Ravussin, E., & Gimble, J. M. (2008). Isolation of human adipose-derived stem cells from biopsies and liposuction specimens. Methods in Molecular Biology (Clifton, N.J.), 449, 69–79. DOI
  29. Eom, Y. W., Lee, J. E., Yang, M. S., Jang, I. K., Kim, H. E., Lee, D. H., Kim, Y. J., Park, W. J., Kong, J. H., Shim, K. Y., Lee, J. I., & Kim, H. S. (2011). Rapid isolation of adipose tissue-derived stem cells by the storage of lipoaspirates. Yonsei Medical Journal, 52(6), 999–1007. DOI
  30. Gimble, J. M., Guilak, F., & Bunnell, B. A. (2010). Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Research & Therapy, 1(2), 19. DOI
  31. Gir, P., Oni, G., Brown, S. A., Mojallal, A., & Rohrich, R. J. (2012). Human adipose stem cells: Current clinical applications. Plastic and Reconstructive Surgery, 129(6), 1277–1290. DOI
  32. Lin, G., Garcia, M., Ning, H., Banie, L., Guo, Y.-L., Lue, T. F., & Lin, C.-S. (2008). Defining stem and progenitor cells within adipose tissue. Stem Cells and Development, 17(6), 1053–1063. DOI
  33. Lin, K., Matsubara, Y., Masuda, Y., Togashi, K., Ohno, T., Tamura, T., Toyoshima, Y., Sugimachi, K., Toyoda, M., Marc, H., & Douglas, A. (2008). Characterization of adipose tissue-derived cells isolated with the CelutionTM system. Cytotherapy, 10(4), 417–426. DOI
  34. Schreml, S., Babilas, P., Fruth, S., Orsó, E., Schmitz, G., Mueller, M. B., Nerlich, M., & Prantl, L. (2009). Harvesting human adipose tissue-derived adult stem cells: Resection versus liposuction. Cytotherapy, 11(7), 947–957. DOI
  35. Ahmad, J., Eaves, F. F., Rohrich, R. J., & Kenkel, J. M. (2011). The American Society for Aesthetic Plastic Surgery (ASAPS) survey: Current trends in liposuction. Aesthetic Surgery Journal, 31(2), 214–224. DOI
  36. Tierney, E. P., Kouba, D. J., & Hanke, C. W. (2011). Safety of tumescent and laser-assisted liposuction: Review of the literature. Journal of Drugs in Dermatology: JDD, 10(12), 1363–1369.
  37. Mojallal, A., Auxenfans, C., Lequeux, C., Braye, F., & Damour, O. (2008). Influence of negative pressure when harvesting adipose tissue on cell yield of the stromal-vascular fraction. Bio-Medical Materials and Engineering, 18(4–5), 193–197.
  38. Kakudo, N., Tanaka, Y., Morimoto, N., Ogawa, T., Kushida, S., Hara, T., & Kusumoto, K. (2013). Adipose-derived regenerative cell (ADRC)-enriched fat grafting: Optimal cell concentration and effects on grafted fat characteristics. Journal of Translational Medicine, 11, 254. DOI
  39. Mizuno, H., Tobita, M., & Uysal, A. C. (2012). Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells (Dayton, Ohio), 30(5), 804–810. DOI
  40. Shah, F. S., Wu, X., Dietrich, M., Rood, J., & Gimble, J. M. (2013). A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy, 15(8), 979–985. DOI
  41. Francis, M. P., Sachs, P. C., Elmore, L. W., & Holt, S. E. (2010). Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis, 6(1), 11–14. DOI
  42. Bunnell, B. A., Flaat, M., Gagliardi, C., Patel, B., & Ripoll, C. (2008). Adipose-derived stem cells: Isolation, expansion and differentiation. Methods (San Diego, Calif.), 45(2), 115–120. DOI
  43. Aronowitz, J. A., & Ellenhorn, J. D. (2013). Adipose stromal vascular fraction isolation: a head-to-head comparison of four commercial cell separation systems. Plastic and Reconstructive Surgery, 132(6), 932e-939e.
  44. Bianchi, F., Maioli, M., Leonardi, E., Olivi, E., Pasquinelli, G., Valente, S., ... & Ventura, C. (2013). A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell transplantation, 22(11), 2063-2077.
  45. Sterodimas, A., de Faria, J., Nicaretta, B., & Boriani, F. (2011). Autologous fat transplantation versus adipose-derived stem cell-enriched lipografts: A study. Aesthetic Surgery Journal, 31(6), 682–693. DOI
  46. Lin, P. P., Wang, Y., & Lozano, G. (2010, October 5). Mesenchymal Stem Cells and the Origin of Ewing’s Sarcoma [Review Article]. Sarcoma; Hindawi. DOI
  47. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews. Immunology, 8(9), 726–736. DOI
  48. Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., Richardson, A. L., Polyak, K., Tubo, R., & Weinberg, R. A. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563. DOI
  49. Weis, S. M., & Cheresh, D. A. (2011). Tumor angiogenesis: Molecular pathways and therapeutic targets. Nature Medicine, 17(11), 1359–1370. DOI
  50. Li, W., Ren, G., Huang, Y., Su, J., Han, Y., Li, J., Chen, X., Cao, K., Chen, Q., Shou, P., Zhang, L., Yuan, Z.-R., Roberts, A. I., Shi, S., Le, A. D., & Shi, Y. (2012). Mesenchymal stem cells: A double-edged sword in regulating immune responses. Cell Death and Differentiation, 19(9), 1505–1513. DOI
  51. Lalu, M. M., McIntyre, L., Pugliese, C., Fergusson, D., Winston, B. W., Marshall, J. C., Granton, J., Stewart, D. J., & Canadian Critical Care Trials Group. (2012). Safety of cell therapy with mesenchymal stromal cells (SafeCell): A systematic review and meta-analysis of clinical trials. PloS One, 7(10), e47559. DOI
  52. Zegers-Hochschild, F., Adamson, G. D., de Mouzon, J., Ishihara, O., Mansour, R., Nygren, K., ... & Van der Poel, S. (2009). The international committee for monitoring assisted reproductive technology (ICMART) and the world health organization (WHO) revised glossary on ART terminology, 2009. Human reproduction, 24(11), 2683-2687.
  53. Esteves, S. C., Sharma, R. K., Gosálvez, J., & Agarwal, A. (2014). A translational medicine appraisal of specialized andrology testing in unexplained male infertility. International Urology and Nephrology, 46(6), 1037–1052. DOI
  54. Gamidov, S. I., Popova, A. Ju., & Ovchinnikov, R. I. (2015). Neobstruktivnaja azoospermija-klinicheskie rekomendacii. RMZh, 23(11), 595–601.
  55. Andersson, A.-M., Jørgensen, N., Frydelund-Larsen, L., Rajpert-De Meyts, E., & Skakkebaek, N. E. (2004). Impaired Leydig cell function in infertile men: A study of 357 idiopathic infertile men and 318 proven fertile controls. The Journal of Clinical Endocrinology and Metabolism, 89(7), 3161–3167. DOI
  56. Bhasin, S., de Kretser, D. M., & Baker, H. W. (1994). Clinical review 64: Pathophysiology and natural history of male infertility. The Journal of Clinical Endocrinology and Metabolism, 79(6), 1525–1529. DOI
  57. Boivin, J., Bunting, L., Collins, J. A., & Nygren, K. G. (2007). International estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Human Reproduction (Oxford, England), 22(6), 1506–1512. DOI
  58. Hull, M. G., Glazener, C. M., Kelly, N. J., Conway, D. I., Foster, P. A., Hinton, R. A., Coulson, C., Lambert, P. A., Watt, E. M., & Desai, K. M. (1985). Population study of causes, treatment, and outcome of infertility. British Medical Journal (Clinical Research Ed.), 291(6510), 1693–1697.
  59. Saunders, D. M., Mathews, M., & Lancaster, P. A. (1988). The Australian Register: Current research and future role. A preliminary report. Annals of the New York Academy of Sciences, 541, 7–21. DOI
  60. Tan, S. L., Doyle, P., Campbell, S., Beral, V., Rizk, B., Brinsden, P., Mason, B., & Edwards, R. G. (1992). Obstetric outcome of in vitro fertilization pregnancies compared with normally conceived pregnancies. American Journal of Obstetrics and Gynecology, 167(3), 778–784. DOI
  61. Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. Lancet (London, England), 371(9606), 75–84. DOI
  62. Matzuk, M. M., & Lamb, D. J. (2008). The biology of infertility: Research advances and clinical challenges. Nature Medicine, 14(11), 1197–1213. DOI
  63. Kurilo, L. F., Andreeva, M. V., Kolomiec, O. V., Sorokina, T. M., Chernyh, V. B., Shilejko, L. V., Hajat, S. Sh., Demikova, N. S., & Kozlova, S. I. (2014, November 29). Geneticheskie sindromy s narushenijami razvitija organov polovoj sistemy (Text.Serial.Journal No. 4). Andrologija i genital'naja hirurgija. DOI
  64. Brandes, M., Hamilton, C. J. C. M., de Bruin, J. P., Nelen, W. L. D. M., & Kremer, J. A. M. (2010). The relative contribution of IVF to the total ongoing pregnancy rate in a subfertile cohort. Human Reproduction, 25(1), 118–126. DOI
  65. Hamada, A., Esteves, S. C., Nizza, M., & Agarwal, A. (2012). Unexplained male infertility: Diagnosis and management. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 38(5), 576–594. DOI
  66. Zini, A., Bielecki, R., Phang, D., & Zenzes, M. T. (2001). Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertility and Sterility, 75(4), 674–677. DOI
  67. Lewis, S. E. M. (2015). Should sperm DNA fragmentation testing be included in the male infertility work-up? Reproductive BioMedicine Online, 31(2), 134–137. DOI
  68. Schoor, R. A., Elhanbly, S., Niederberger, C. S., & Ross, L. S. (2002). The role of testicular biopsy in the modern management of male infertility. The Journal of Urology, 167(1), 197–200.
  69. Esteves, S. C., Prudencio, C., Seol, B., Verza, S., Knoedler, C., & Agarwal, A. (2014). Comparison of sperm retrieval and reproductive outcome in azoospermic men with testicular failure and obstructive azoospermia treated for infertility. Asian Journal of Andrology, 16(4), 602–606. DOI
  70. Baker, K., & Sabanegh, E. (2013). Obstructive azoospermia: Reconstructive techniques and results. Clinics, 68(Suppl 1), 61–73. DOI
  71. Esteves, S. C. (2015). Clinical management of infertile men with nonobstructive azoospermia. Asian Journal of Andrology, 17(3), 459–470. DOI
  72. Esteves, S. C., Miyaoka, R., & Agarwal, A. (2011a). An update on the clinical assessment of the infertile male. [Corrected]. Clinics (Sao Paulo, Brazil), 66(4), 691–700. DOI
  73. Carpi, A., Sabanegh, E., & Mechanick, J. (2009). Controversies in the management of nonobstructive azoospermia. Fertility and Sterility, 91(4), 963–970. DOI
  74. Cocuzza, M., Alvarenga, C., & Pagani, R. (2013). The epidemiology and etiology of azoospermia. Clinics, 68(Suppl 1), 15–26. DOI
  75. Practice Committee of the American Society for Reproductive Medicine in collaboration with the Society for Male Reproduction and Urology. (2018). Evaluation of the azoospermic male: A committee opinion. Fertility and Sterility, 109(5), 777–782. DOI
  76. Gudeloglu, A., & Parekattil, S. J. (2013). Update in the evaluation of the azoospermic male. Clinics, 68(Suppl 1), 27–34. DOI
  77. Hung, A. J., King, P., & Schlegel, P. N. (2007). Uniform testicular maturation arrest: A unique subset of men with nonobstructive azoospermia. The Journal of Urology, 178(2), 608–612; discussion 612. DOI
  78. Sussman, E. M., Chudnovsky, A., & Niederberger, C. S. (2008). Hormonal evaluation of the infertile male: Has it evolved? The Urologic Clinics of North America, 35(2), 147–155, vii. DOI
  79. Bobjer, J., Naumovska, M., Giwercman, Y. L., & Giwercman, A. (2012). High prevalence of androgen deficiency and abnormal lipid profile in infertile men with non-obstructive azoospermia. International Journal of Andrology, 35(5), 688–694. DOI
  80. Reifsnyder, J. E., Ramasamy, R., Husseini, J., & Schlegel, P. N. (2012). Role of optimizing testosterone before microdissection testicular sperm extraction in men with nonobstructive azoospermia. The Journal of Urology, 188(2), 532–536. DOI
  81. Kumar, R. (2013). Medical management of non-obstructive azoospermia. Clinics, 68(Suppl 1), 75–79. DOI
  82. Hammoud, A., Carrell, D. T., Meikle, A. W., Xin, Y., Hunt, S. C., Adams, T. D., & Gibson, M. (2010). An aromatase polymorphism modulates the relationship between weight and estradiol levels in obese men. Fertility and Sterility, 94(5), 1734–1738. DOI
  83. Isidori, A. M., Caprio, M., Strollo, F., Moretti, C., Frajese, G., Isidori, A., & Fabbri, A. (1999). Leptin and androgens in male obesity: Evidence for leptin contribution to reduced androgen levels. The Journal of Clinical Endocrinology and Metabolism, 84(10), 3673–3680. DOI
  84. Strain, G., Zumoff, B., Rosner, W., & Pi-Sunyer, X. (1994). The relationship between serum levels of insulin and sex hormone-binding globulin in men: The effect of weight loss. The Journal of Clinical Endocrinology and Metabolism, 79(4), 1173–1176. DOI
  85. Chiba, K., Enatsu, N., & Fujisawa, M. (2016). Management of non‐obstructive azoospermia. Reproductive Medicine and Biology, 15(3), 165–173. DOI
  86. Silber, S. J. (2000). Microsurgical TESE and the distribution of spermatogenesis in non-obstructive azoospermia. Human Reproduction (Oxford, England), 15(11), 2278–2284. DOI
  87. Esteves, S. C., Miyaoka, R., & Agarwal, A. (2011b). Sperm retrieval techniques for assisted reproduction. International Braz J Urol: Official Journal of the Brazilian Society of Urology, 37(5), 570–583. DOI
  88. Hendriks, S., Dancet, E. a. F., Meissner, A., van der Veen, F., Mochtar, M. H., & Repping, S. (2014). Perspectives of infertile men on future stem cell treatments for nonobstructive azoospermia. Reproductive Biomedicine Online, 28(5), 650–657. DOI
  89. Palermo, G., Joris, H., Devroey, P., & Van Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet (London, England), 340(8810), 17–18. DOI
  90. Belva, F., De Schrijver, F., Tournaye, H., Liebaers, I., Devroey, P., Haentjens, P., & Bonduelle, M. (2011). Neonatal outcome of 724 children born after ICSI using non-ejaculated sperm. Human Reproduction (Oxford, England), 26(7), 1752–1758. DOI
  91. Ivell, R., Kotula-Balak, M., Glynn, D., Heng, K., & Anand-Ivell, R. (2011). Relaxin family peptides in the male reproductive system—A critical appraisal. Molecular Human Reproduction, 17(2), 71–84. DOI
  92. Schlegel, P. N. (2009). Evaluation of male infertility. Minerva ginecologica, 61(4), 261.
  93. Cyranoski, D. (2013). Stem cells boom in vet clinics. Nature, 496(7444), 148–149. DOI
  94. Fazeli, Z., Abedindo, A., Omrani, M. D., & Ghaderian, S. M. H. (2018). Mesenchymal Stem Cells (MSCs) Therapy for Recovery of Fertility: A Systematic Review. Stem Cell Reviews and Reports, 14(1), 1–12. DOI
  95. Hosseinzadeh Shirzeily, M., Pasbakhsh, P., Amidi, F., Mehrannia, K., & Sobhani, A. (2013). Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells. Iranian Journal of Reproductive Medicine, 11(12), 965–976.
  96. Nayernia, K., Lee, J. H., Drusenheimer, N., Nolte, J., Wulf, G., Dressel, R., Gromoll, J., & Engel, W. (2006). Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation; a Journal of Technical Methods and Pathology, 86(7), 654–663. DOI
  97. Nayernia, K., Nolte, J., Michelmann, H. W., Lee, J. H., Rathsack, K., Drusenheimer, N., Dev, A., Wulf, G., Ehrmann, I. E., Elliott, D. J., Okpanyi, V., Zechner, U., Haaf, T., Meinhardt, A., & Engel, W. (2006). In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Developmental Cell, 11(1), 125–132. DOI
  98. Yazawa, T., Mizutani, T., Yamada, K., Kawata, H., Sekiguchi, T., Yoshino, M., Kajitani, T., Shou, Z., Umezawa, A., & Miyamoto, K. (2006). Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells. Endocrinology, 147(9), 4104–4111. DOI
  99. Hua, J., Yu, H., Dong, W., Yang, C., Gao, Z., Lei, A., Sun, Y., Pan, S., Wu, Y., & Dou, Z. (2009). Characterization of mesenchymal stem cells (MSCs) from human fetal lung: Potential differentiation of germ cells. Tissue and Cell, 41(6), 448–455. DOI
  100. Shlush, E., Maghen, L., Swanson, S., Kenigsberg, S., Moskovtsev, S., Barretto, T., Gauthier-Fisher, A., & Librach, C. L. (2017). In vitro generation of Sertoli-like and haploid spermatid-like cells from human umbilical cord perivascular cells. Stem Cell Research & Therapy, 8(1), 37. DOI
  101. Asgari, H. R., Akbari, M., Abbasi, M., Ai, J., Korouji, M., Aliakbari, F., Babatunde, K. A., Aval, F. S., & Joghataei, M. T. (2015). Human Wharton’s jelly-derived mesenchymal stem cells express oocyte developmental genes during co-culture with placental cells. Iranian Journal of Basic Medical Sciences, 18(1), 22–29.
  102. Xie, L., Lin, L., Tang, Q., Li, W., Huang, T., Huo, X., Liu, X., Jiang, J., He, G., & Ma, L. (2015). Sertoli cell-mediated differentiation of male germ cell-like cells from human umbilical cord Wharton’s jelly-derived mesenchymal stem cells in an in vitro co-culture system. European Journal of Medical Research, 20, 9. DOI
  103. Sabbaghi, M. A., Bahrami, A. R., Feizzade, B., Kalantar, S. M., Matin, M. M., Kalantari, M., Aflatoonian, A., & Saeinasab, M. (2012). Trial evaluation of bone marrow derived mesenchymal stem cells (MSCs) transplantation in revival of spermatogenesis in testicular torsion. Middle East Fertility Society Journal, 17(4), 243–249. DOI
  104. Rahmanifar, F., Tamadon, A., Mehrabani, D., Zare, S., Abasi, S., Keshavarz, S., Dianatpour, M., Khodabandeh, Z., Jahromi, I. R. G., & Koohi-Hoseinabadi, O. (2016). Histomorphometric evaluation of treatment of rat azoosper-mic seminiferous tubules by allotransplantation of bone marrow-derived mesenchymal stem cells. Iranian Journal of Basic Medical Sciences, 19(6), 653–661.
  105. Vahdati, A., Fathi, A., Hajihoseini, M., Aliborzi, G., & Hosseini, E. (2017). The Regenerative Effect of Bone Marrow-Derived Stem Cells in Spermatogenesis of Infertile Hamster. World Journal of Plastic Surgery, 6(1), 18–25.
  106. Cakici, C., Buyrukcu, B., Duruksu, G., Haliloglu, A. H., Aksoy, A., Isık, A., Uludag, O., Ustun, H., Subası, C., & Karaoz, E. (2013, February 18). Recovery of Fertility in Azoospermia Rats after Injection of Adipose-Tissue-Derived Mesenchymal Stem Cells: The Sperm Generation [Research Article]. BioMed Research International; Hindawi. DOI
  107. Zhang, D., Liu, X., Peng, J., He, D., Lin, T., Zhu, J., Li, X., Zhang, Y., & Wei, G. (2014). Potential Spermatogenesis Recovery with Bone Marrow Mesenchymal Stem Cells in an Azoospermic Rat Model. International Journal of Molecular Sciences, 15(8), 13151–13165. DOI
  108. Aghamir, S. M. K., Salavati, A., Yousefie, R., Tootian, Z., Ghazaleh, N., Jamali, M., & Azimi, P. (2014). Does Bone Marrow–derived Mesenchymal Stem Cell Transfusion Prevent Antisperm Antibody Production After Traumatic Testis Rupture? Urology, 84(1), 82–86. DOI
  109. Hsiao, C.-H., Ji, A. T.-Q., Chang, C.-C., Cheng, C.-J., Lee, L.-M., & Ho, J. H.-C. (2015). Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Research & Therapy, 6(1). DOI
  110. Ghasemzadeh-Hasankolaei, M., Batavani, R., Eslaminejad, M. B., & Sayahpour, F. (2016). Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells into the Testes of Infertile Male Rats and New Germ Cell Formation. International Journal of Stem Cells, 9(2), 250–263. DOI
  111. Abd Allah, S. H., Pasha, H. F., Abdelrahman, A. A., & Mazen, N. F. (2017). Molecular effect of human umbilical cord blood CD34-positive and CD34-negative stem cells and their conjugate in azoospermic mice. Molecular and Cellular Biochemistry, 428(1–2), 179–191. DOI
  112. Yang, R. F., Liu, T. H., Zhao, K., & Xiong, C. L. (2014). Enhancement of mouse germ cell-associated genes expression by injection of human umbilical cord mesenchymal stem cells into the testis of chemical-induced azoospermic mice. Asian Journal of Andrology, 16(5), 698.
  113. Hajihoseini, M., Vahdati, A., Hosseini, S. E., Mehrabani, D., & Tamadon, A. (2017). Induction of spermatogenesis after stem cell therapy of azoospermic guinea pigs. DOI
  114. Liu, H., Chen, M., Liu, L., Ren, S., Cheng, P., & Zhang, H. (2018). Induction of Human Adipose-Derived Mesenchymal Stem Cells into Germ Lineage Using Retinoic Acid. Cellular Reprogramming, 20(2), 127–134. DOI
  115. Sherif, I. O., Sabry, D., Abdel-Aziz, A., & Sarhan, O. M. (2018). The role of mesenchymal stem cells in chemotherapy-induced gonadotoxicity. Stem Cell Research & Therapy, 9(1), 196. DOI
  116. Leatherman, J. (2013). Stem cells supporting other stem cells. Frontiers in Genetics, 4. DOI
  117. Mansour, A., Abou-Ezzi, G., Sitnicka, E., Jacobsen, S. E. W., Wakkach, A., & Blin-Wakkach, C. (2012). Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. The Journal of Experimental Medicine, 209(3), 537–549. DOI
  118. Mital, P., Kaur, G., & Dufour, J. M. (2010). Immunoprotective sertoli cells: Making allogeneic and xenogeneic transplantation feasible. Reproduction (Cambridge, England), 139(3), 495–504. DOI
  119. AlZoubi, A. M. (2014). Abstract 3038: Intra-testicular transplantation of purified autologous stem cells for treatment of chemotherapy-induced male infertility. Cancer Research, 74(19 Supplement), 3038–3038. DOI
  120. Knigavko, O., & Bezborodova, I. (2017). 215 Using Autological Stem Cells for Treatment of Not Obstractive Azoospermia. The Journal of Sexual Medicine, 14(1), S60. DOI
  121. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. DOI
  122. Gronthos, Stan, Zannettino, A. C. W., Hay, S. J., Shi, S., Graves, S. E., Kortesidis, A., & Simmons, P. J. (2003). Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. Journal of Cell Science, 116(Pt 9), 1827–1835. DOI
  123. Ohgushi, H., Kotobuki, N., Funaoka, H., Machida, H., Hirose, M., Tanaka, Y., & Takakura, Y. (2005). Tissue engineered ceramic artificial joint—Ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials, 26(22), 4654–4661. DOI
  124. Wongchuensoontorn, C., Liebehenschel, N., Schwarz, U., Schmelzeisen, R., Gutwald, R., Ellis, E., & Sauerbier, S. (2009). Application of a new chair-side method for the harvest of mesenchymal stem cells in a patient with nonunion of a fracture of the atrophic mandible—A case report. Journal of Cranio-Maxillo-Facial Surgery: Official Publication of the European Association for Cranio-Maxillo-Facial Surgery, 37(3), 155–161. DOI
  125. Gronthos, S., Franklin, D. M., Leddy, H. A., Robey, P. G., Storms, R. W., & Gimble, J. M. (2001). Surface protein characterization of human adipose tissue-derived stromal cells. Journal of Cellular Physiology, 189(1), 54–63. DOI
  126. Tsai, M.-S., Lee, J.-L., Chang, Y.-J., & Hwang, S.-M. (2004). Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Human Reproduction (Oxford, England), 19(6), 1450–1456. DOI
  127. Zvaifler, N. J., Marinova-Mutafchieva, L., Adams, G., Edwards, C. J., Moss, J., Burger, J. A., & Maini, R. N. (2000). Mesenchymal precursor cells in the blood of normal individuals. Arthritis Research, 2(6), 477–488. DOI
  128. Igura, K., Zhang, X., Takahashi, K., Mitsuru, A., Yamaguchi, S., & Takahashi, T. A. (2004). Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy, 6(6), 543-553.
  129. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., ... & Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell, 13(12), 4279-4295.
  130. Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L. W., Robey, P. G., & Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 100(10), 5807-5812.
  131. Parte, S., Bhartiya, D., Telang, J., Daithankar, V., Salvi, V., Zaveri, K., & Hinduja, I. (2011). Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem cells and development, 20(8), 1451-1464.
  132. Iwata, T., Yamato, M., Zhang, Z., Mukobata, S., Washio, K., Ando, T., ... & Ishikawa, I. (2010). Validation of human periodontal ligament‐derived cells as a reliable source for cytotherapeutic use. Journal of Clinical Periodontology, 37(12), 1088-1099.
  133. Hasebe, Y., Hasegawa, S., Hashimoto, N., Toyoda, M., Matsumoto, K., Umezawa, A., ... & Akamatsu, H. (2011). Analysis of cell characterization using cell surface markers in the dermis. Journal of dermatological science, 62(2), 98-106.
  134. Yu, G., Wu, X., Dietrich, M. A., Polk, P., Scott, L. K., Ptitsyn, A. A., & Gimble, J. M. (2010). Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes. Cytotherapy, 12(4), 538-546.
  135. Kadar, K., Kiraly, M., Porcsalmy, B., Molnar, B., Racz, G. Z., Blazsek, J., ... & Varga, G. (2009). Differentiation potential of stem cells from human dental origin-promise for tissue engineering. J Physiol Pharmacol, 60(Suppl 7), 167-175.
  136. Kyurkchiev, S., Shterev, A., & Dimitrov, R. (2010). Assessment of presence and characteristics of multipotent stromal cells in human endometrium and decidua. Reproductive biomedicine online, 20(3), 305-313.
  137. Royer-Pokora, B., Busch, M., Beier, M., Duhme, C., de Torres, C., Mora, J., ... & Royer, H. D. (2010). Wilms tumor cells with WT1 mutations have characteristic features of mesenchymal stem cells and express molecular markers of paraxial mesoderm. Human molecular genetics, 19(9), 1651-1668.
  138. Mousavi Niri, N., Jaberipour, M., Razmkhah, M., Ghaderi, A., & Habibagahi, M. (2009). Mesenchymal stem cells do not suppress lymphoblastic leukemic cell line proliferation. Iranian Journal of Immunology, 6(4), 186-194.
  139. Orciani, M., Mariggiò, M. A., Morabito, C., Di Benedetto, G., & Di Primio, R. (2010). Functional characterization of calcium-signaling pathways of human skin-derived mesenchymal stem cells. Skin pharmacology and physiology, 23(3), 124-132.
  140. Bühring, H. J., Treml, S., Cerabona, F., De Zwart, P., Kanz, L., & Sobiesiak, M. (2009). Phenotypic characterization of distinct human bone marrow–derived MSC subsets. Annals of the New York Academy of Sciences, 1176(1), 124-134.
  141. Latif, N., Sarathchandra, P., Thomas, P. S., Antoniw, J., Batten, P., Chester, A. H., ... & Yacoub, M. H. (2007). Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. JOURNAL OF HEART VALVE DISEASE, 16(1), 56.
  142. Gronthos, S., Graves, S. E., Ohta, S., & Simmons, P. J. (1994). The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors.
  143. Gronthos, S., Zannettino, A. C., Graves, S. E., Ohta, S., Hay, S. J., & Simmons, P. J. (1999). Differential cell surface expression of the STRO‐1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. Journal of Bone and Mineral Research, 14(1), 47-56.
  144. Stewart, K., Walsh, S., Screen, J., Jefferiss, C. M., Chainey, J., Jordan, G. R., & Beresford, J. N. (1999). Further characterization of cells expressing STRO‐1 in cultures of adult human bone marrow stromal cells. Journal of Bone and Mineral Research, 14(8), 1345-1356.
  145. Simmons, P. J., & Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1.
  146. Simmons, P. J., Gronthos, S., Zannettino, A., Ohta, S., & Graves, S. (1994). Isolation, characterization and functional activity of human marrow stromal progenitors in hemopoiesis. Progress in clinical and biological research, 389, 271.
  147. Walsh, S., Jefferiss, C., Stewart, K., Jordan, G. R., Screen, J., & Beresford, J. N. (2000). Expression of the developmental markers STRO-1 and alkaline phosphatase in cultures of human marrow stromal cells: regulation by fibroblast growth factor (FGF)-2 and relationship to the expression of FGF receptors 1–4. Bone, 27(2), 185-195.
  148. Conget, P. A., & Minguell, J. J. (1999). Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. Journal of cellular physiology, 181(1), 67-73.
  149. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., ... & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. science, 284(5411), 143-147.