Современные тенденции в создании препаратов для лечения болезни Альцгеймера и их клинические испытания
##plugins.themes.bootstrap3.article.main##
Аннотация
При болезни Альцгеймера (БА) происходит внутриклеточное и внеклеточное накопление фибриллярных белков: бета-амилоида и гиперфосфорилированного тау, которые приводят к хроническому и прогрессирующему нейродегенеративному процессу в мозге. Накопление отложений вызывает синаптическую дисфункцию и неизбежную гибель нейронов. До сих пор молекулярные механизмы БА изучены не полностью, однако установлено, что БА является многофакторным расстройством, при этом преклонный возраст является основным фактором риска. За последнее десятилетие более 50 лекарственных кандидатов успешно прошли клинические исследования II фазы, при этом ни один из них не прошел исследования фазы III. С использованием общедоступного интернет-ресурса www.clinicaltrials.gov и Alzforum.org, а также базы Thomson Reuters “Integrity” в обзоре суммированы данные по разработке препаратов для лечения болезни Альцгеймера, находящихся в настоящее время на клинических исследованиях. Выделены некоторые основные тенденции: (1) разработка соединений, действующих на основные стадии патогенеза болезни (так называемые “болезнь-модифицирующие” средства) – препараты, которые могут замедлить развитие структурных и функциональных аномалий в центральной нервной системе, обеспечивая устойчивое улучшение когнитивных функций, сохраняющихся даже после отмены препарата; (2) целенаправленная разработка мультитаргетных лекарств, действующих на несколько молекулярных мишеней, вовлеченных в патогенез болезни; (3) репозиционирование известных ранее лекарств на новое (анти-альцгеймеровское) применение, представляющее собой очень перспективный подход.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- WHO. Dementia. Retrieved December 12, 2017, from: http://www.who.int/news-room/fact-sheets/detail/dementia
- McDade, E. Bateman, R. J. (2017). Stop Alzheimer's before it starts. Nature, 547(7662), 153-155. DOI
- Vademecum. R&D VSEGO SVYATOGO Retrieved March 23, 2016, from: https://vademec.ru/article/r_d_vsego_svyatogo/
- Kukharsky, M. S., Ovchinnikov, R. K., Bachurin, S. O. (2015). [Molecular aspects of the pathogenesis and current approaches to pharmacological correction of Alzheimer's disease]. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova, 115(6), 103-114. DOI
- Nussbaum, J. M., Seward, M. E., Bloom, G. S. (2014). Alzheimer disease: a tale of two prions. Prion, 7(1), 14-19. DOI
- Carreiras, M. C., Mendes, E., Perry, M. J., Francisco, A. P., Marco-Contelles, J. (2013). The multifactorial nature of Alzheimer's disease for developing potential therapeutics. Current Topics in Medicinal Chemistry, 13(15), 1745-1770. DOI
- De-Paula, V. J., Radanovic, M., Diniz, B. S., Forlenza, O. V. (2012). Alzheimer's disease. Subcellular Biochemistry, 65, 329-352. DOI
- Karran, E., Mercken, M., De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nature Reviews Drug Discovery, 10(9), 698-712. DOI
- Maccioni, R. B., Farias, G., Morales, I., Navarrete, L. (2010). The revitalized tau hypothesis on Alzheimer's disease. Archives of Medical Research, 41(3), 226-231. DOI
- Sorbi, S. (1993). Molecular genetics of Alzheimer's disease. Aging (Milano), 5(6), 417-425. DOI
- Scheltens, P., Blennow, K., Breteler, M. M., de Strooper, B., Frisoni, G. B., Salloway, S., Van der Flier, W. M. (2016). Alzheimer's disease. Lancet Neurology, 388(10043), 505-517. DOI
- Bradley, W. G. (1990). Alzheimer's disease: theories of causation. Advances in Experimental Medicine and Biology, 282, 31-38. DOI
- Borchelt, D. R., Thinakaran, G., Eckman, C. B., Lee, M. K., Davenport, F., Ratovitsky, T., Prada, C. M., Kim, G., Seekins, S., Yager, D., Slunt, H. H., Wang, R., Seeger, M., Levey, A. I., Gandy, S. E., Copeland, N. G., Jenkins, N. A., Price, D. L., Younkin, S. G., Sisodia, S. S. (1996). Familial Alzheimer's disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron, 17(5), 1005-1013. DOI
- Chartier-Harlin, M. C., Crawford, F., Hamandi, K., Mullan, M., Goate, A., Hardy, J., Backhovens, H., Martin, J. J., Broeckhoven, C. V. (1991). Screening for the beta-amyloid precursor protein mutation (APP717: Val----Ile) in extended pedigrees with early onset Alzheimer's disease. Neuroscience Letters, 129(1), 134-135. DOI
- Levy-Lahad, E., Wijsman, E. M., Nemens, E., Anderson, L., Goddard, K. A., Weber, J. L., Bird, T. D., Schellenberg, G. D. (1995). A familial Alzheimer's disease locus on chromosome 1. Science, 269(5226), 970-973. PMID: 7638621
- Sisodia, S. S., Kim, S. H., Thinakaran, G. (1999). Function and dysfunction of the presenilins. The American Journal of Human Genetics, 65(1), 7-12. DOI
- Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E., Klug, A. (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proceedings of the National Academy of Sciences of the United States of America, 85(11), 4051-4055. DOI
- Wischik, C. M., Novak, M., Edwards, P. C., Klug, A., Tichelaar, W., Crowther, R. A. (1988). Structural characterization of the core of the paired helical filament of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 85(13), 4884-4888. DOI
- Olsson, B., Lautner, R., Andreasson, U., Ohrfelt, A., Portelius, E., Bjerke, M., Holtta, M., Rosen, C., Olsson, C., Strobel, G., Wu, E., Dakin, K., Petzold, M., Blennow, K., Zetterberg, H. (2016). CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. The Lancet Neurology, 15(7), 673-684. DOI
- Glenner, G. G., Wong, C. W., Quaranta, V., Eanes, E. D. (1984). The amyloid deposits in Alzheimer's disease: their nature and pathogenesis. Applied Pathology, 2(6), 357-369. PMID: 6242724
- Selkoe, D. J. (1994). Alzheimer's disease: a central role for amyloid. Journal of Neuropathology and Experimental Neurology, 53(5), 438-447. DOI
- Khlistunova, I., Biernat, J., Wang, Y., Pickhardt, M., von Bergen, M., Gazova, Z., Mandelkow, E., Mandelkow, E. M. (2006). Inducible expression of Tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. The Journal of Biological Chemistry, 281(2), 1205-1214. DOI
- Walsh, D. M. Selkoe, D. J. (2007). A beta oligomers - a decade of discovery. Journal of Neurochemistry, 101(5), 1172-1184. DOI
- Querfurth, H. W. LaFerla, F. M. (2010). Alzheimer's disease. The New England Journal of Medicine, 362(4), 329-344. DOI
- Friedland-Leuner, K., Stockburger, C., Denzer, I., Eckert, G. P., Muller, W. E. (2014). Mitochondrial dysfunction: cause and consequence of Alzheimer's disease. Progress in Molecular Biology and Translational Science, 127, 183-210. DOI
- Raskin, J., Cummings, J., Hardy, J., Schuh, K., Dean, R. A. (2015). Neurobiology of Alzheimer's Disease: Integrated Molecular, Physiological, Anatomical, Biomarker, and Cognitive Dimensions. Current Alzheimer Research, 12(8), 712-722. DOI
- Tipping, K. W., van Oosten-Hawle, P., Hewitt, E. W., Radford, S. E. (2015). Amyloid Fibres: Inert End-Stage Aggregates or Key Players in Disease? Trends in Biochemical Sciences, 40(12), 719-727. DOI
- Iqbal, K., Liu, F., Gong, C. X. (2016). Tau and neurodegenerative disease: the story so far. Nature reviews Neurology, 12(1), 15-27. DOI
- Gavrilova, S. I., Seleznyova, N. D., Roshchina, I. F., Fedorova, Y. B., Rannaya diagnostika bolezni Alzgeimera na dodementnoistadii i preventivnaja terapiya., in Neirodegenerativnye zabolevaniya, Ugryumov, M. V., Editor. 2014, Nauchny Mir: Moskow. p. 95-123.
- Nordberg, A. (2006). Mechanisms behind the neuroprotective actions of cholinesterase inhibitors in Alzheimer disease. Alzheimer Disease and Associated Disorders, 20(2 Suppl 1), S12-18. DOI
- Chalmers, K. A., Wilcock, G. K., Vinters, H. V., Perry, E. K., Perry, R., Ballard, C. G., Love, S. (2009). Cholinesterase inhibitors may increase phosphorylated tau in Alzheimer's disease. Journal of neurology, 256(5), 717-720. DOI
- Danysz, W., Parsons, C. G., Mobius, H. J., Stoffler, A., Quack, G. (2000). Neuroprotective and symptomatological action of memantine relevant for Alzheimer's disease--a unified glutamatergic hypothesis on the mechanism of action. Neurotoxicity Research, 2(2-3), 85-97. DOI
- Danysz, W. Parsons, C. G. (2012). Alzheimer's disease, beta-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. British Journal of Pharmacology, 167(2), 324-352. DOI
- Mohandas, E., Rajmohan, V., Raghunath, B. (2009). Neurobiology of Alzheimer's disease. Indian J Psychiatry, 51(1), 55-61. DOI
- Hemming, M. L. Selkoe, D. J. (2005). Amyloid beta-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. The Journal of Biological Chemistry, 280(45), 37644-37650. DOI
- Zhang, Y., McLaughlin, R., Goodyer, C., LeBlanc, A. (2002). Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. Journal of Cell Biology, 156(3), 519-529. DOI
- Laske, C. (2015). Phase 3 trials of solanezumab and bapineuzumab for Alzheimer's disease. The New England Journal of Medicine, 370(15), 1459. DOI
- Honig, L. S., Vellas, B., Woodward, M., Boada, M., Bullock, R., Borrie, M., Hager, K., Andreasen, N., Scarpini, E., Liu-Seifert, H., Case, M., Dean, R. A., Hake, A., Sundell, K., Hoffmann, V. P., Carlson, C., Khanna, R., Mintun, M., DeMattos, R., Selzler, K. J., Siemers, E. (2018). Trial of Solanezumab for Mild Dementia Due to Alzheimer's Disease. The New England Journal of Medicine, 378(4), 321-330. DOI
- Budd, S. H., O'Gorman, J., Chiao, P., Bussière, T., Tian, Y., Zhu, Y., Gheuens, S., Skordos, L., Chen, T., Sandrock, A. (2017). Clinical Development of Aducanumab, an Anti-Aβ Human Monoclonal Antibody Being Investigated for the Treatment of Early Alzheimer's Disease. The journal of prevention of Alzheimer's disease, 4(4), 255-263. DOI
- Jacobsen, H., Ozmen, L., Caruso, A., Narquizian, R., Hilpert, H., Jacobsen, B., Terwel, D., Tanghe, A., Bohrmann, B. (2014). Combined treatment with a BACE inhibitor and anti-Abeta antibody gantenerumab enhances amyloid reduction in APPLondon mice. Journal of Neuroscience, 34(35), 11621-11630. DOI
- Relkin, N. (2014). Clinical trials of intravenous immunoglobulin for Alzheimer's disease. Journal of Clinical Immunology, 34 Suppl 1, S74-79. DOI
- Relkin, N. R., Szabo, P., Adamiak, B., Burgut, T., Monthe, C., Lent, R. W., Younkin, S., Younkin, L., Schiff, R., Weksler, M. E. (2009). 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiology of Aging, 30(11), 1728-1736. DOI
- Baxalta. Phase III Efficacy, Safety, and Tolerability Study of HYQVIA/HyQvia and GAMMAGARD LIQUID/KIOVIG in CIDP. Retrieved May 18, 2018, from: https://clinicaltrials.gov/ct2/show/NCT02549170
- Liu, E., Schmidt, M. E., Margolin, R., Sperling, R., Koeppe, R., Mason, N. S., Klunk, W. E., Mathis, C. A., Salloway, S., Fox, N. C., Hill, D. L., Les, A. S., Collins, P., Gregg, K. M., Di, J., Lu, Y., Tudor, I. C., Wyman, B. T., Booth, K., Broome, S., Yuen, E., Grundman, M., Brashear, H. R. (2015). Amyloid-beta 11C-PiB-PET imaging results from 2 randomized bapineuzumab phase 3 AD trials. Neurology, 85(8), 692-700. DOI
- Hu, C., Adedokun, O., Ito, K., Raje, S., Lu, M. (2015). Confirmatory population pharmacokinetic analysis for bapineuzumab phase 3 studies in patients with mild to moderate Alzheimer's disease. Journal of Clinical Pharmacology, 55(2), 221-229. DOI
- Jarvis, L. M. (2015). The Next Chapter In Treating Alzheimer's. Chemical and Engineering News. ACS, 93(22), 11-15.
- Schneeberger, A., Mandler, M., Otawa, O., Zauner, W., Mattner, F., Schmidt, W. (2009). Development of AFFITOPE vaccines for Alzheimer's disease (AD)--from concept to clinical testing. The Journal of Nutrition, Health & Aging, 13(3), 264-267. DOI
- PRNewswire. Breakthrough in Alzheimer's Disease: AFFiRiS Halted Clinical Progression in Alzheimer Patients Upon Treatment With AD04 in a Phase II Clinical Study. Retrieved June 04, 2014, from: http://www.prnewswire.com/news-releases/breakthrough-in-alzheimers-disease-affiris-halted-clinical-progression-in-alzheimer-patients-upon-treatment-with-ad04-in-a-phase-ii-clinical-study-261788511.html
- Schneeberger, A., Hendrix, S., Ellison, N., BГјrger, V., Dubois, B. (2015). Results from a phase II study to assess the clinical and immunological activity, safety and tolerability of AFFITOPE AD02 in patients with early Alzheimer's (Abst. 042). in Alzheimer's & Dementia: The Journal of the Alzheimer's Association. Nice, France.
- Hickman, D. T., Lopez-Deber, M. P., Ndao, D. M., Silva, A. B., Nand, D., Pihlgren, M., Giriens, V., Madani, R., St-Pierre, A., Karastaneva, H., Nagel-Steger, L., Willbold, D., Riesner, D., Nicolau, C., Baldus, M., Pfeifer, A., Muhs, A. (2011). Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. The Journal of Biological Chemistry, 286(16), 13966-13976. DOI
- Tucker, S., Moller, C., Tegerstedt, K., Lord, A., Laudon, H., Sjodahl, J., Soderberg, L., Spens, E., Sahlin, C., Waara, E. R., Satlin, A., Gellerfors, P., Osswald, G., Lannfelt, L. (2015). The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. Journal of Alzheimer's Disease, 43(2), 575-588. DOI
- Wang, C. Y., Finstad, C. L., Walfield, A. M., Sia, C., Sokoll, K. K., Chang, T. Y., Fang, X. D., Hung, C. H., Hutter-Paier, B., Windisch, M. (2007). Site-specific UBITh amyloid-beta vaccine for immunotherapy of Alzheimer's disease. Vaccine, 25(16), 3041-3052. DOI
- UnitedNeuroscienceLtd. Evaluate the Safety, Tolerability, Immunogenicity and Efficacy of UB-311 in Mild Alzheimer's Disease (AD) Patients. Retrieved April 11, 2018, from: https://clinicaltrials.gov/ct2/show/NCT02551809
- Adolfsson, O., Pihlgren, M., Toni, N., Varisco, Y., Buccarello, A. L., Antoniello, K., Lohmann, S., Piorkowska, K., Gafner, V., Atwal, J. K., Maloney, J., Chen, M., Gogineni, A., Weimer, R. M., Mortensen, D. L., Friesenhahn, M., Ho, C., Paul, R., Pfeifer, A., Muhs, A., Watts, R. J. (2012). An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. Journal of Neuroscience, 32(28), 9677-9689. DOI
- Landen, J. W., Zhao, Q., Cohen, S., Borrie, M., Woodward, M., Billing, C. B., Jr., Bales, K., Alvey, C., McCush, F., Yang, J., Kupiec, J. W., Bednar, M. M. (2013). Safety and pharmacology of a single intravenous dose of ponezumab in subjects with mild-to-moderate Alzheimer disease: a phase I, randomized, placebo-controlled, double-blind, dose-escalation study. Clinical Neuropharmacology, 36(1), 14-23. DOI
- Dodel, R., Rominger, A., Blennow, K., Barkhof, F., Wietek, S., Haag, S., Bartenstein, P., Farlow, M., Jessen, F. (2011). A randomized, double-blind, placebo-controlled dose-finding trial of intravenous immunoglobulin (IVIG; Octagam�