Фильтрация данных 2D электрофореза при создании выборки для предсказания значения изоэлектрической точки белков

##plugins.themes.bootstrap3.article.main##

В.С. Скворцов
А.В. Рыбина

Аннотация

Рассмотрен ряд простых фильтров, сформулированных из общих соображений и учитывающих особенности проведения экспериментов, а также полученных в ходе выполнения двумерного (2D) электрофореза результатов. Данные фильтры могут быть использованы для автоматизированного формирования и верификации выборок для обучения систем предсказания значений изоэлектрической точки белков. Среди них: (i) фильтрация явных ошибок, внесённых при формирование исходной базы данных; (ii) отбор заведомо достоверного диапазона значений; (iii) отбор единственного варианта среди различных протеоформ; (iv) отбор в пределах заданной величины отклонения электрофоретического сдвига и другие. На примере выборки, объединяющей данные из 8 карт Homo sapiens, Mus musculus и Rattus norvegicus, применение данного набора фильтров позволило улучшить R2 предсказания от 0.44 до 0.67.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Скворцов V., & Рыбина A. (2022). Фильтрация данных 2D электрофореза при создании выборки для предсказания значения изоэлектрической точки белков. Biomedical Chemistry: Research and Methods, 5(1), e00162. https://doi.org/10.18097/BMCRM00162
Раздел
ПРОТОКОЛЫ ЭКСПЕРИМЕНТОВ, ПОЛЕЗНЫЕ МОДЕЛИ, ПРОГРАММЫ И СЕРВИСЫ

Библиографические ссылки

  1. Skvortsov, V.S, Voronina, A.I., Ivanova, Y.O., Rybina, A.V. (2021) The Prediction of the Isoelectric Point Value of Peptides and Proteins with a Wide Range of Chemical Modifications. Biomedical Chemistry: Research and Methods, 4(4), e00161. DOI
  2. Po, H.N., Senozan, N.M. (2001) The Henderson-Hasselbalch Equation: Its History and Limitations. Journal of Chemical Education, 78, 1499-1503. DOI
  3. Kozlowski, L.P. (2021) IPC 2.0: prediction of isoelectric point and pKa dissociation constants. Nucleic Acids Research, 49(W1, 2), W285–W292. DOI
  4. Naryzhny, S.N., Legina, O.K. (2019) Structural-functional diversity of p53 proteoforms. Biomeditsinskaya khimiya, 65(4), 263-276. DOI
  5. Bjellqvist, B., Hughes, G.J., Pasquali, C., Paquet, N., Ravier, F., Sanchez, J. C., Frutiger, S., Hochstrasser, D. (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis, 14(10), 1023–1031. DOI
  6. Kozlowski, L. P. (2022) Proteome-pI 2.0: proteome isoelectric point database update. Nucleic acids research, 50(D1), D1535-D1540. DOI
  7. Kitchin, R. (2014) Big Data, new epistemologies and paradigm shifts. Big data & society, 1(1), 2053951714528481. DOI
  8. Hoogland, C., Mostaguir, K., Appel, R.D., Lisacek, F. (2008) The World-2DPAGE Constellation to promote and publish gel-base d proteomics data through the ExPASy server. Journal of proteomics, 71(2), 245–248. DOI
  9. The UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Research, 49(D1), D480–D489. DOI
  10. Sanchez, J. C., Chiappe, D., Converset, V., Hoogland, C., Binz, P.A., Paesano, S., Appel, R.D., Wang, S., Sennitt, M., Nolan, A., Cawthorne, M.A., Hochstrasser, D.F. (2001) The mouse SWISS-2D PAGE database: a tool for proteomics study of diabetes and obesity. Proteomics, 1(1), 136–163. DOI
  11. Sanchez, J.C., Appel, R.D., Golaz, O., Pasquali, C., Ravier, F., Bairoch, A., Hochstrasser, D.F. (1995) Inside SWISS-2DPAGE database. Electrophoresis, 16(7), 1131–1151. DOI
  12. Demalte-Annessi, I., Sanchez, J.-C., Hoogland, C., Rouge, V., Binz, P.-A., Appel, R.D., Hochstrasser D.F. (1999) Submitted JAN-1999 to SWISS-2DPAGE. Retrieved from: https://world-2dpage.expasy.org/swiss-2dpage/map=dld1_human
  13. Golaz, O., Hughes, G.J., Frutiger, S., Paquet, N., Bairoch, A., Pasquali, C., Sanchez, J. C., Tissot, J. D., Appel, R.D., Walzer, C. (1993) Plasma and red blood cell protein maps: update 1993. Electrophoresis, 14(11), 1223–1231. DOI
  14. D'Hertog, W., Maris, M., Thorrez, L., Waelkens, E., Overbergh, L., Mathieu, C. (2011) Two-dimensional gel proteome reference map of INS-1E cells. Proteomics, 11(7), 1365–1369. DOI
  15. Plikat, U., Voshol, H., Dangendorf, Y., Wiedmann, B., Devay, P., Müller, D., Wirth, U., Szustakowski, J., Chirn, G.W., Inverardi, B., Puyang, X., Brown, K., Kamp, H., Hoving, S., Ruchti, A., Brendlen, N., Peterson, R., Buco, J., Oostrum, J. v., Peitsch, M.C. (2007) From proteomics to systems biology of bacterial pathogens: approaches, tools, and applications. Proteomics, 7(6), 992–1003. DOI
  16. Franco, C.F., Santos, R., Coelho, A.V. (2011) Exploring the proteome of an echinoderm nervous system: 2-DE of the sea star radial nerve cord and the synaptosomal membranes subproteome. Proteomics, 11(7), 1359–1364. DOI
  17. Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G., Deber, C. M. (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proceedings of the National Academy of Sciences, 106(6), 1760-1765. DOI