Обнаружение N-белка SARS-Cov-2 в мезенхимальных клетках вартонова студня пуповины у женщин с COVID-19
##plugins.themes.bootstrap3.article.main##
Аннотация
Несмотря на большое количество исследований, посвященных новой коронавирусной инфекции SARS-Cov-2, для которой характерно поражение сосудов, вопрос о влиянии вируса на систему «мать-плацента-плод» остается открытым. Пуповина по своему функциональному назначению представляет комплекс сосудов, защищенных от внешнего воздействия эмбриональной соединительной тканью – Вартоновым студнем. Цель исследования – выявить N-белок вируса SARS-Cov-2 в структурах пупочного канатика у женщин, заболевших COVID-19. В основную группу были включены 40 беременных женщин, проходивших лечение в Национальном медицинском исследовательском центре акушерства, гинекологии и перинатологии имени академика В. И. Кулакова (март-апрель 2020 г.) с наличием подтвержденного диагноза COVID-19 (по данным ПЦР-теста мазка, взятого из носоглотки), и 40 беременных группы сравнения без клинических и лабораторных признаков вирусной инфекции (с отрицательным тестом ПЦР). В результате иммуногистохимического исследования пуповины с первичными антителами к N-белку SARS-Cov-2 в группе COVID-19 выявлено окрашивание цитоплазмы фибробластоподобных клеток и единичных макрофагов Вартонова студня (р < 0.05), которое отсутствовало у женщин без коронавирусной инфекции. Представленные данные о вероятном персистировании вирусных белков в мезенхимальных клетках, а также в макрофагах Вартонова студня пуповины могут иметь значение в установлении новых патогенетических механизмов влияния СOVID-19 на систему «мать-плацента-плод», а также раскрытии новых патогенетических механизмов защиты плода от вирусных агентов.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Kovrigina, A.M., Shalamova, E.A., Berezovskij, Iy. S., (2020). Patomorfologicheskaya i immunogistoximicheskaya xarakteristika izmenenij limfaticheskix uzlov u umershix ot covid-19 po dannym autopsij. Klinicheskaya i Eksperimental'naya Morfologiya., 9(4), 12–23. DOI
- Atala, A., Henn, A., Lundberg, M. (2020). Regen med therapeutic opportunities for fighting COVID-19. Stem Cells Translational Med., 1, 5–13. DOI
- Becker, R.C. (2020). COVID-19-associated vasculitis and vasculopathy. J. Thromb Thrombolysis., 50(3), 499-511. DOI
- Lang, M., Som, A., Carey, D., et al. (2020). Pulmonary vascular manifestations of COVID-19 pneumonia. Radiol Cardiothorac Imaging., 2(3), e200277. DOI
- McGonagle, D., Bridgewood, C., Ramanan A.V., et al. (2021). COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatol., 3(3), e224-e233. DOI
- Morris, D., Patel, K., Rahimi, O., et al. (2021). ANCA vasculitis: A manifestation of Post-Covid-19 Syndrome. Respir Med. Case Rep., 34, 101549. DOI
- Baergen, R. N. (2022). Benirschke’s Pathology of the Human Placenta. Springer Nature, 954 p.
- Lanzoni, G., Linetsky, E., Correa, D., et al. (2020). Umbilical Cord-derived Mesenchymal Stem Cells for COVID-19 Patients with Acute Respiratory Distress Syndrome (ARDS). Cell R4 Repair Replace Regen Reprogram., 8, e2839. DOI
- Paladino, F.V., Rodrigues, J.M., Silva, A., Goldberg, A. C. (2019). The immunomodulatory potential of wharton's jelly mesenchymal stem/stromal cells. Stem Cells Int., 3548917. DOI
- Alanazi, A., (2021) COVID-19 and the role of stem cells. Regen Ther., 18, 334- 338. DOI
- Babal, P., Krivosikova, L., Sarvaicova, L., et al. (2021) Intrauterine fetal demise after uncomplicated COVID-19: What can we learn from the case? Viruses, 13(12), 2545. DOI
- Biringer, K., Sivakova, J., Marcinek, J., et al. (2021) Placental pathology concerning sudden fetal demise in SARS-CoV-2 positive asymptomatic pregnant female. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 165, 328-331. DOI
- Lesieur, E., Torrents, J., Fina, F., et al. (2021). Congenital infection of SARS- CoV-2 with intrauterine foetal death: a clinicopathological study with molecular analysis. Clin. Infect. Dis., ciab840. DOI
- Libbrecht, S., Van Cleemput, J., Vandekerckhove, L., et al. (2021) A rare but devastating cause of twin loss in a near-term pregnancy highlighting the features of severe SARS-CoV-2 placentitis. Histopathology, 79(4), 674-676. DOI
- Marinho, P.S., Cunha, A., Chimelli, L., et al. (2021) SARS-CoV-2 mother-to- child transmission and fetal death associated with severe placental thromboembolism. Front Med (Lausanne), 16(8), 677001. DOI
- Schwartz, D.A., Graham, A.L. (2020) Potential maternal and infant outcomes from coronavirus 2019-nCoV (SARS-CoV-2) infecting pregnant women: Lessons from SARS, MERS, and other human coronavirus infections. Viruses, 12(2), 194. DOI
- Vacchi, C., Meschiari, M., Milic, J., et al. (2020) COVID-19-associated vasculitis and thrombotic complications: from pathological findings to multidisciplinary discussion. Rheumatology (Oxford), 59(12), e147-e150. DOI
- Nizyaeva, N.V., Lomova, N.A., Dolgopolova, E.L,i dr. (2021) Vliyanie novoj koronavirusnoj infekcii COVID-19 na sistemu «mat'–placenta– plod». Vestnik RGMU, 2021(2), 27–34. DOI
- Gioia, C., Zullo, F., Vecchio, R. C., et al. (2022) Stillbirth and fetal capillary infection by SARS-CoV-2 632 Am. J. Obstet. Gynecol. MFM, 4(1), 100523. DOI
- Garrido-Pontnou, M., Navarro, A., Camacho, J., et al. (2021) Diffuse trophoblast damage is the hallmark of SARS-CoV-2-associ-ated fetal demise. Mod. Pathol., 34, 1704-1709. DOI
- Marton, T., Hargitai, B., et al. (2021) Massive perivillous fibrin deposition and chronic histiocytic intervillositis a complication of SARS-CoV-2 Infection. Pediatr. Dev. Pathol., 24, 450-454. DOI
- Hosier, H., Farhadian, S. F., Morotti, R. A., at al. (2020) SARS–CoV-2 infection of the placenta. J. Clin. Invest., 130(9), 4947-4953. DOI
- Nagamatsu, T., Schust D. J. (2010) The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod. Sci., 17(3), 209-218. DOI
- Gurevich P.S. (2011) Immunopatologiya zarodyshevogo, `embrional'nogo i rannego fetal'nogo periodov cheloveka. Allogennye konflikty, Izrail', 182 p.
- Liu, W., Li, J. (2021) The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a potential target for drug or vaccine mitigation. Viruses, 13(6), 1115. DOI
- Singh, D., Yi, S.V. (2021) On the origin and evolution of SARS-CoV-2. Exp. Mol. Med., 53, 537–547. DOI:10.1038/s12276-021-00604-z
- Uribe-Querol, E., Rosales, C. (2020) Phagocytosis: Our Current Understanding of a Universal Biological Process. Front Immunol., 11, 1066. DOI
- Beyerstedt, S., Casaro, E. B., Rangel, É. B. (2021) COVID-19: angiotensin- converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis., 40(5), 905-919. DOI
- Yang, J., Petitjean, S. J. L., Koehler, M., et al. (2021) Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun., 11(1), 4541. DOI
- Sukhacheva, T.V., Nizyaeva, N.V., Samsonova, M.V., et al. (2021) Morpho- functional changes of cardiac telocytes in isolated atrial amyloidosis in patients with atrial fibrillation. Sci Rep., 11, 3563. DOI
- Adukia, S. A., Ruhatiya, R. S., Maheshwarappa, H. M., et al. (2020) Extrapulmonary features of COVID-19: A Concise Review. Indian J. Crit. Care. Med., 24(7), 575-580. DOI:10.5005/jp-journals-10071-23476
- Elrobaal, I. H., New, K. J. (2021) COVID-19: Pulmonary and extra pulmonary manifestations. Front. Public Health, 9, 711616. DOI
- Gupta, A., Madhavan, M.V., Sehgal, K., et al. (2020) Extrapulmonary manifestations of COVID-19. Nat. Med., 26, 1017–1032. DOI
- Nasonov, E.L., Lila, A.M., Mazurov, V.I., et al. (2021) Coronavirus disease 2019 (COVID-19) and immune-mediated rheumatic diseases. recommendations of the association of rheumatologists of russia. rheumatology Science and Practice., 59(3), 239-254. DOI DOI