Сравнительный анализ протеомного профиля кератиноцитов HaCaT с использованием 1DE-гель концентрирования
##plugins.themes.bootstrap3.article.main##
Аннотация
Проведена оценка протокола пробоподготовки образцов клеточной культуры кератиноцитов, основанного на солюбилизации белков в присутствии 0.2% додецилсульфата натрия (SDS), процедуре 1DE-гель концентрирования (SDS-PAGE без фракционирования в разделяющем геле) и расщеплении трипсином в геле для углубленного протеомного анализа кератиноцитов НаСаТ в одной полосе белка. С помощью тандемной масс-спектрометрии с электроспрейной ионизацией (LC-MS/MS) проведен сравнительный анализ белков кератиноцитов НаСаТ до и после воздействия SDS в субтоксической дозе (25 мг/мл) в течение 48 ч. В качестве белков сравнения выбраны белки, кодируемые генами хромосомы 18 человека. Всего в иммортализованных кератиноцитах человека линии НаСаТ обнаружено 2418 белков, из них около 70% идентифицировано по двум и более уникальным пептидам. По результатам панорамного масс-спектрометрического анализа удалось идентифицировать 38 белков, кодируемых генами хромосомы 18; из них 27 белков были общими для контрольных клеток и клеток НаСаТ, подвергнутых воздействию SDS. С использованием базы данных Metascape был проведен анализ обогащения терминами онтологии генов (GO) категории биологические процессы (biological process) белков хромосомы 18 кератиноцитов НаСаТ до и после воздействия SDS. Обработка клеточной культуры SDS приводила к незначительному обогащению GO термина “ответ на стимул” (GO:0050896 - response to stimulus) и связанного с ним GO термина “негативная регуляция биологических процессов” (GO:0048519 - negative regulation of biological process). Было обнаружено снижение уровня экспрессии мембранных белков, кодируемых генами хромосомы 18, относящихся к межклеточной адгезии (GO:0098609 - cell-cell adhesion), таких как DSC1, DSC3 и DSG1. Снижение уровня экспрессии десмосомальных кадгеринов характерно для злокачественных новообразований, развивающихся из клеток эпителиальной ткани различных внутренних органов, слизистых оболочек, кожи. Примененный в работе способ подготовки образцов кератиноцитов НаСаТ позволил идентифицировать в одной полосе геля в два раза больше белков по сравнению с образцами НаСаТ, подвергнутыми осмотическому шоку и расщеплению трипсином в растворе.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Ramadan, Q., Ting, F.C. (2016) In vitro micro-physiological immune-competent model of the human skin. Lab. Chip, 16(10), 1899-1908. DOI
- OECD (2013), Test No. 431: In Vitro Skin Corrosion: Reconstructed Human Epidermis (RHE) Test Method, OECD Publishing, Paris,34 p. DOI
- OECD (2013), Test No. 439: In Vitro Skin Irritation - Reconstructed Human Epidermis Test Method, OECD Publishing, Paris,21 p. DOI
- Rusanov, A.L., Luzgina, N.G., Lisitsa, A.V. (2017) Sodium Dodecyl Sulfate Cytotoxicity towards HaCaT Keratinocytes: Comparative Analysis of Methods for Evaluation of Cell Viability. Bulletin of Experimental Biology and Medicine, 163(2), 284-288. DOI
- Lindberg, M., Forslind, B., Sagstrom, S., Roomans, G.M. (1992) Elemental changes in guinea pig epidermis at repeated exposure to sodium lauryl sulfate. Acta Dermato-Venereologic, 72(6), 428–431. DOI
- Miura, Y., Hisaki, H., Fukushima, B., Nagai,T., Ikeda, T. (1989) Detergent induced changes in serum lipid composition in rats. Lipids, 24(11), 915–918. DOI
- Van de Sandt, J.J., Bos, T.A., Rutten, A.A. (1995) Epidermal cell proliferation and terminal differentiation in skin organ culture after topical exposure to sodium dodecyl sulphate. In Vitro Cell. & Dev. Biol. Animal, 31(10), 761–766. DOI
- Petushkova, N.A., Rusanov, A.L. , Zgoda, V.G., Pyatnitskiy, M.A., Larina, O.V., Nakhod, K.V., Luzgina, N.G., Lisitsa, A.V. (2017) Proteome of the human hacat keratinocytes: identification of the oxidative stress proteins after sodium dodecyl sulpfate exposure. Molecular Biology, 51(5), 748–758. DOI
- Quirino, J.P. (2018) Sodium dodecyl sulfate removal during electrospray ionization using cyclodextrins as simple sample solution additive for improved mass spectrometric detection of peptides. Anal Chim Acta, 16 (1005), 54-60. DOI
- Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc., 1(6), 2856-60. DOI
- Gold Biotechnology (2018) In-gel digestion and extraction of proteins protocol. Retrieved September 9, 2022 from: https://goldbio.com/documents/1060/In%20Gel%20Digestion%20and%20Extraction%20of%20Proteins%20Protocol.pdf
- Kachuk, C., Stephen, K., Doucette, A. (2015) Comparison of sodium dodecyl sulfate depletion techniques for proteome analysis by mass spectrometry. J. Chromatography A. DOI
- Ilavenil, S., Al-Dhabi, N.A., Srigopalram, S., Kim, Y.O., Agastian, P., Baaru, R., Choi, K.C., Arasu, M.V., Park, C.G., Park, K.H. (2016) Removal of SDS from biological protein digests for proteomic analysis by mass spectrometry. Proteome Sci., 14, 11. DOI
- Shkrigunov, T., Pogodin, P., Zgoda, V., Larina, O., Kisrieva, Y., Klimenko, M., Latyshkevich, O., Klimenko, P., Lisitsa, A., Petushkova, N. (2022) Protocol for increasing the sensitivity of MS-based protein detection in human chorionic villi. Curr. Issues Mol. Biol., 44 (5), 2069–2088. DOI
- UniProt: the Universal Protein Knowledgebase in 2023. The UniProt Consortium. Nucleic Acids Research, 51 (D1), D523–D531. DOI
- Kisrieva, Y.S., Samenkova, N.F., Larina, O.B., Zgoda, V.G., Karuzina, I.I., Rusanov, A.L., Luzgina, N.G.,Petushkova, N.A. (2020) Comparative study of the human keratinocytes proteome of the HaCaT line: identification of proteins encoded by genes of 18 chromosomes under the influence of detergents. Biomeditsinskaya Khimiya, 66(6), 469-476. DOI
- Walker, J.M. (1994) The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol., 32, 5–8. DOI
- Chambers, M., Maclean, B., Burke, R. et al. (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol., 30, 918–920. DOI
- Vaudel, M., Barsnes, H., Berven, F.S., Sickmann, A, Martens, L. (2011) SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics, 11(5), 996–999. DOI
- Vaudel, M., Burkhart, J., Zahedi, R. et al. (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol., 33, 22–24. DOI
- Florens, L., Carozza, M. J., Swanson, S.K., Fournier, M., Coleman, M.K., Workman, J. L., Washburn, M.P. (2006) Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods., 40(4), 303-311. DOI
- Ashburner, M., Ball,C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S. & Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 25(1), 25-9. DOI
- Mi, H., Thomas, P. (2009) PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol., 563, 123-40. DOI
- Kopylov, A.T., Zgoda, V.G., Archakov, A.I. (2009) Label-free quantitative analysis of proteins using mass-spectrometry. Biomeditsinskaya Khimiya, 55(2), 125-39. DOI
- Uhlén, M., Fagerberg, L., Hallström, B.M., Lindskog C. , Oksvold, P., Adil Mardinoglu, A., Sivertsson, Å,. Kampf, C., Sjöstedt, E.(2015). Tissue-based map of the human proteome. Science, 347 (6220). DOI
- Oldach, M. (2018) Normalized spectral abundance factor (NSAF) for quantitative liquid chromatography mass spectrometry-based proteomics. GitHub. Retrieved September 9, 2022 from: https://github.com/moldach/proteomics-spectralCount-normalization ' target='_blank' > DOI
- Eisenberg, E., Levanon, EY. (2013) Human metang genes, revisited. Trends Genet., 29, 569–574. DOI
- Hounkpe, B.W., Chenou, F., de Lima, F., De Paula, E.V. (2021) HRT Atlas v1.0 database: redefining human and mouse housekeeping genes and candidate reference transcripts by mining massive RNA-seq datasets. Nucleic Acids Res., 49 (D1), 947-955. DOI
- Lane, L., Argoud-Puy, G., Britan, A., Cusin, I., Duek, P.D., Evalet, O., Gateau, A., Gaudet, P., Gleizes, A., Masselot, A., Zwahlen, C., Bairoch, A. (2012) neXtProt: a knowledge platform for human proteins. Nucleic Acids Res., 40 (Database issue), D76-83. DOI
- Wu, Q., Feng, Q., Xiong, Y., Xing, L. (2020) RAB31 is targeted by miR-26b and serves a role in the promotion of osteosarcoma. Oncol. Lett., 20(5), 244. DOI
- Tanaka, Ki, Kanazawa, I., Richards, J.B., Goltzman, D, Sugimoto, T. (2020) Modulators of Fam210a and Roles of Fam210a in the Function of Myoblasts. Calcified Tissue International, 106, 533–540 DOI
- Poulton, C.J., Schot, R., Kia, S.K., Jones, M., Verheijen, F.W., Venselaar, H., Marie-Claire, de Wit Y., de Graaff, E., Bertoli-Avella, A.M., Mancini, G.M.S. (2011) Microcephaly with simplified gyration, epilepsy, and infantile diabetes linked to inappropriate apoptosis of neural progenitors. Am. J. Hum. Genet., 89(2), 265-76. DOI
- Hall, P.A., Russell, S.E.H. (2004) The pathobiology of the septin gene family. J. Pathol., 204(4), 489-505. DOI
- Dolat, L., Hunyara, J.L., Bowen, J.R., Spiliotis, E.T. (2014) Septins promote stress fiber-mediated maturation of focal adhesions and renal epithelial motility. Journal of Cell Biology, 207(2), 225-35. DOI
- Montagna, C., Bejerano-Sagie, M., Zechmeister, J.R. (2015) Mammalian septins in health and disease. Res. Rep. Biochem., 5, 59–73. DOI 10.2147/RRBC.S59060
- Farrugia, A.J., Rodrıguez, J., Orgaz, J.L., Lucas, M., Sanz-Moreno, V. & Calvo, F. (2020) CDC42EP5/BORG3 modulates SEPT9 to promote actomyosin function, migration, and invasion. J. Cell Biol., 219 (9), e201912159. DOI
- Zhou,Y., Zhou B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., Sumit, K., Chanda, S.K. (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communication, 10(1), 1523. DOI
- Heath, C.G., Viphakone, N., Wilson, S.A. (2016) The role of TREX in gene expression and disease. Biochem J., 473(19), 2911–35. DOI
- Dominguez-Sanchez, M.S., Saez, C., Japon, M.A., Aguilera, A., Luna, R. (2011) Differential expression of THOC1 and ALY mRNP biogenesis/export factors in human cancers. BMC Cancer, 11(77). DOI
- Huber, O., Petersen, I. (2015) 150th anniversary series: desmosomes and the hallmarks of cancer. Cell Commun Adhes., 22(1), 15–28. DOI
- Takeda, A., Kajiya, A., Iwasawa, A., Nakamura, Y., Hibino, T. (2002) Aberrant expression of serpin squamous cell carcinoma antigen 2 in human tumor tissues and cell lines: evidence of protection from tumor necrosis factor mediated apoptosis. Biol. Chem., 383, 1231–1236. DOI
- Tonnetti, L., Netzel-Arnett, S., Darnell, G.A., Hayes, T., Buzza, M.S., Anglin, I.E., Suhrbier, A., Antalis, T.M. (2008) SerpinB2 protection of retinoblastoma protein from calpain enhances tumor cell survival. Cancer Res., 68, 5648–5657. DOI
- Ding, S., Blue, R.E., Morgan, D.R., Lund, P.K. (2014) Comparison of multiple enzyme activatable near-infrared fluorescent molecular probes for detection and quantification of inflammation in murine colitis models. Inflamm. Bowel Dis., 20(2), 363-77. DOI
- Askew, Y.S., Pak, S.C., Luke, C.J., Askew, D.J., Cataltepe, S., Mills, D.R., Kato, H., Lehoczky, J., Dewar, K., Birren, B., Silverman, G.A. (2001) SERPINB12 is a novel member of the human ov-serpin family that is widely expressed and inhibits trypsin-like serine proteinases. J. Biol. Chem., 276(52), 49320-30. DOI