Прямая детекция микроРНК mir-34a, -145 и -218 с помощью CRISPR/Cas13a-нуклеазы

##plugins.themes.bootstrap3.article.main##

О.С. Тимошенко
Л.К. Курбатов
С.А. Хмелева
К.Г. Птицын
С.П. Радько
А.В. Лисица

Аннотация

Показана возможность прямой детекции трех микроРНК, miR-34a, -145 и -218 (чья молекулярная сигнатура предлагается как диагностический и прогностический биомаркер при раке шейки матки), с помощью CRISPR/Cas13a-нуклеазы. Детекция основано на регистрации расщепления молекулярных «репортеров» – коротких РНК-олигонуклеотидов, несущих флуорофор и гаситель – комплексом CRISPR/Cas13a-нуклеазы и направляющей РНК (нРНК) со спейсером длиной 21-23 нуклеотида. Чувствительность обнаружения варьировала 10-кратно среди тестированных микроРНК, предположительно из-за нежелательного внутримолекулярного частичного спаривания оснований нРНК. Обнаружено, что детекция микроРНК с помощью нуклеазы Cas13a сильно зависит от присутствия фоновой РНК, что в общем случае может затруднить такую детекцию в сложном матриксе. Дальнейшая оптимизация условий измерения, включая, вероятно, дополнительное усиление сигнала, генерируемого коллатеральной активностью нуклеазы Cas13a, необходима для прямой детекции miR-34a, -145 и -218 в биологических образцах.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Тимошенко O., Курбатов L., Хмелева S., Птицын K., Радько S., & Лисица A. (2023). Прямая детекция микроРНК mir-34a, -145 и -218 с помощью CRISPR/Cas13a-нуклеазы. Biomedical Chemistry: Research and Methods, 6(4), e00203. https://doi.org/10.18097/BMCRM00203
Раздел
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Библиографические ссылки

  1. Cai, Y., Yu, X., Hu, S., Yu, J. (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics, 7(4), 147-154. DOI
  2. Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S., Ghaffari, S.H. (2019) An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol., 234(5), 5451-5465. DOI
  3. Macfarlane, L.A., Murphy, P.R. (2010) MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics., 11(7), 537-561. DOI
  4. de Planell-Saguer, M., Rodicio, M.C. (2013) Detection methods for microRNAs in clinic practice Clin Biochem. 46(10-11), 869-878. DOI
  5. Aftab, M., Poojary, S.S., Seshan, V., Kumar, S., Agarwal, P., Tandon, S., Zutshi, V., Das, B.C. (2021) Urine miRNA signature as a potential non-invasive diagnostic and prognostic biomarker in cervical cancer. Sci Rep., 11(1),10323. DOI
  6. Kiseleva, Y.Y., Ptitsyn, K.G., Radko, S.P., Zgoda, V.G., Archakov, A.I. (2016) Digital droplet PCR - a prospective technological approach to quantitative profiling of microRNA. Biomeditsinskaya Khimiya. 62(4), 403-410. DOI
  7. Ferreira, C.E.S., Guerra, J.C.C., Slhessarenko, N., Scartezini, M., Franca, C.N., Colombini, M.P., Berlitz, F., Machado, A.M.O., Campana, G.A., Faulhaber, A.C.L., Galoro, C.A., Dias, C.M., Shcolnik, W., Martino, M.D.V., Cesar, K.R., Sumita, N.M., Mendes, M.E., Faulhaber, M.H.W., Pinho, J.R.R., Barbosa, I.V., Batista, M.C., Khawali, C., Pariz V.M., Andriolo, A. (2018) Point-of-Care Testing: General Aspects. Clin Lab., 64(1), 1-9. DOI
  8. Kaminski, M.M., Abudayyeh, O.O., Gootenberg, J.S., Zhang, F., Collins, J.J. (2021) CRISPR-based diagnostics. Nat Biomed Eng., 5(7), 643-656. DOI
  9. Wu, W.Y., Lebbink, J.H.G., Kanaar, R., Geijsen, N., van der Oost (2018) Genome editing by natural and engineered CRISPR-associated nucleases. J. Nat Chem Biol. 14(7), 642-651. DOI
  10. Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E.S., Koonin, E.V., Zhang, F. (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353(6299), aaf5573. DOI
  11. Shan, Y., Zhou, X., Huang, R., Xing, D. (2019) High-Fidelity and Rapid Quantification of miRNA Combining crRNA Programmability and CRISPR/Cas13a trans-Cleavage Activity. Anal Chem., 91(8), 5278-5285. DOI
  12. 12. Wang, J.Y., Chen, L.J. (2019) The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep., 39(3), BSR20181377. DOI
  13. Kurbatov, L.K., Radko, P. S., Kravchenko, S.V., Kiseleva, O.I., Durmanov, N.D., Lisitsa ,A.V. (2020) Single Stage Purification of CRISPR/Cas13a Nuclease by Metal-Chelating Chromatography Following Heterologous Expression with Preservation of Collateral Ribonuclease Activity. Applied Biochemistry and Microbiology, 56(6), 671-677 DOI
  14. Kurbatov, L., Radko, S., Khmeleva, S., Timoshenko, O., & Lisitsa, A. (2022). Standardization of Recombinant CRISPR/Cas13a-nuclease Preparations by Using RNase A of Known Activity.. Biomedical Chemistry: Research and Methods, 5(4), e00177. DOI
  15. Gu, S., Zhang, Y., Jin, L., Huang, Y., Zhang, F., Bassik, M.C., Kampmann, M., Kay, M.A. (2014) Weak base pairing in both seed and 3' regions reduces RNAi off-targets and enhances si/shRNA designs. Nucleic Acids Res., 42(19), 12169-12176. DOI
  16. Seok, H., Lee, H., Jang, E.S., Chi, S.W.(2018) Evaluation and control of miRNA-like off-target repression for RNA interference. Cell Mol Life Sci., 75(5), 797-814. DOI
  17. Bruch, R., Baaske, J., Chatelle, C., Meirich, M., Madlener, S., Weber W., Dincer, C., Urban, G.A. (2019) CRISPR/Cas13a-Powered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplification-Free miRNA Diagnostics. Adv. Mater., 31(51), e1905311. DOI
  18. Bruch, R., Johnston, M., Kling, A., Mattmüller, T., Baaske, J., Partel, S., Madlener, S., Weber, W., Urban, G.A., Dincer, C.(2021) CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics. Biosens Bioelectron., 177, 112887. DOI
  19. Cui, Y., Fan, S., Yuan, Z., Song, M., Hu, J., Qian, D., Zhen, D., Li, J., Zhu, B. (2021) Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly Talanta. , 224:121878. DOI
  20. Zhou, T., Huang, R., Huang, M., Shen, J., Shan, Y., Xing, D. (2020) CRISPR/Cas13a Powered Portable Electrochemiluminescence Chip for Ultrasensitive and Specific MiRNA Detection. Adv Sci (Weinh), 7(13), 1903661. DOI
  21. Sha, Y., Huang, R., Huang, M., Yue, H., Shan, Y., Hu. J., Xing, D. (2021) Cascade CRISPR/cas enables amplification-free microRNA sensing with fM-sensitivity and single-base-specificity. Chem Commun (Camb)., 57(2), 247-250. DOI
  22. Zhao, D., Tang, J., Tan, Q., Xie, X., Zhao, X., Xing, D. (2023) CRISPR/Cas13a-triggered Cas12a biosensing method for ultrasensitive and specific miRNA detection. Talanta., 260, 124582. DOI