Влияние присоединения сRGD пептида к фосфолипидным наночастицам с включенным доксорубицином на апоптоз в клетках глиобластомы in vitro

##plugins.themes.bootstrap3.article.main##

Л.В. Кострюкова
Ю.А. Терешкина
А.М. Гисина
Ф.Н. Бедретдинов
А.М. Пятигорский

Аннотация

Одним из методов лечения глиобластомы после хирургического вмешательства является химиотерапия. Используемые при этом препараты ввиду их неспецифического распределения приводят к ряду осложнений. Одним из способов преодоления данного недостатка является снабжение лекарств системами доставки с адресными молекулами. Это способствует накоплению терапевтических агентов непосредственно в очаге поражения и минимизирует побочные проявления. В данной работе исследовали влияние фосфолипидной композиции доксорубицина с адресным сRGD пептидом (NPh-Dox-cRGD), который селективно взаимодействует с интегрином αvβ3 на поверхности ряда опухолевых клеток, включая клетки глиобластомы. Сравнительная оценка цитотоксического действия свободной субстанции (Dox), композиции NPh-Dox-cRGD и Dox, встроенной в фосфолипидные наночастицы без адресного лиганда (NPh-Dox), показала, что при встраивании в фосфолипидные наночастицы Dox проявляет цитотоксическое действие в меньшей степени. Через 24 ч инкубации клеток U-87 MG с веществами в максимальной концентрации по Dox (30 мкг/мл) процент живых клеток составлял для Dox – 6%, для NPh-Dox-cRGD – 21% и для NPh-Dox – 17%. На контрольной клеточной линии HeLa статистически значимых различий отмечено не было. Оценка гибели опухолевых клеток с помощью метода проточной цитометрии указывала на то, что большая часть клеток погибала по пути апоптоза. При инкубации с композицией, содержащей адресный пептид, NPh-Dox-cRGD, в концентрации (по Dox) 0.5 мкг/мл процент клеток, подверженных позднему апоптозу, составлял 29.7%, для свободной формы – 24.4%. Оценка клеток, подверженных раннему апоптозу (концентрация по Dox 0.5 мкг/мл) показала, что процент данных клеток для образца с пептидом был выше и составлял 11.4%.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Кострюкова L., Терешкина Y., Гисина A., Бедретдинов F., & Пятигорский A. (2023). Влияние присоединения сRGD пептида к фосфолипидным наночастицам с включенным доксорубицином на апоптоз в клетках глиобластомы in vitro. Biomedical Chemistry: Research and Methods, 6(4), e00204. https://doi.org/10.18097/BMCRM00204
Раздел
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Библиографические ссылки

  1. Liu, D., Dai, X., Ye, L., Wang, H., Qian, H., Cheng, H., Wang, X. (2023) Nanotechnology meets glioblastoma multiforme: Emerging therapeutic strategies. Wiley interdisciplinary reviews. Nanomedicine and Nanobiotechnology, 15(1), e1838. DOI
  2. Schaff, L. R., Mellinghoff, I. K. (2023) Glioblastoma and Other Primary Brain Malignancies in Adults: A Review. JAMA, 329(7), 574–587. DOI
  3. Yang, J., Li, Y., Zhang, T., & Zhang, X. (2016) Development of bioactive materials for glioblastoma therapy. Bioactive Materials, 1(1), 29–38. DOI
  4. Meng, L., Chu, X., Xing, H., Liu, X., Xin, X., Chen, L., Jin, M., Guan, Y., Huang, W., & Gao, Z. (2019). Improving glioblastoma therapeutic outcomes via doxorubicin-loaded nanomicelles modified with borneol. International Journal of Pharmaceutics, 567, 118485. DOI
  5. Sági, J. C., Egyed, B., Kelemen, A., Kutszegi, N., Hegyi, M., Gézsi, A., Herlitschke, M. A., Rzepiel, A., Fodor, L. E., Ottóffy, G., Kovács, G. T., Erdélyi, D. J., Szalai, C., Semsei, Á. F. (2018) Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer, 18(1), 704. DOI
  6. Maksimenko, O., Malinovskaya, J., Shipulo, E., Osipova, N., Razzhivina, V., Arantseva, D., Yarovaya, O., Mostovaya, U., Khalansky, A., Fedoseeva, V., Alekseeva, A., Vanchugova, L., Gorshkova, M., Kovalenko, E., Balabanyan, V., Melnikov, P., Baklaushev, V., Chekhonin, V., Kreuter, J., Gelperina, S. (2019) Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development. International Journal of Pharmaceutics, 572, 118733. DOI
  7. Shafei, A., El-Bakly, W., Sobhy, A., Wagdy, O., Reda, A., Aboelenin, O., Marzouk, A., El Habak, K., Mostafa, R., Ali, M. A., Ellithy, M. (2017) A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomedicine & Pharmacotherapy, 95, 1209–1218. DOI
  8. Weekes, C. D., Vose, J. M., Lynch, J. C., Weisenburger, D. D., Bierman, P. J., Greiner, T., Bociek, G., Enke, C., Bast, M., Chan, W. C., Armitage, J. O., Nebraska Lymphoma Study Group (2002) Hodgkin's disease in the elderly: improved treatment outcome with a doxorubicin-containing regimen. Journal of clinical oncology, 20(4), 1087–1093. DOI
  9. Fekih, L., Boussoffara, L., Fenniche, S., Abdelghaffar, H., Akrout, I., Ayadi, A., Megdiche, M. L. (2011) Sarcome primitif rare de la paroi thoracique: le synovialosarcome [Rare primary chest wall sarcoma: the synovialosarcoma]. Revue des Maladies Respiratoires, 28(5), 681–685. DOI
  10. Aljarrah, K., Mhaidat, N. M., Al-Akhras, M. A., Aldaher, A. N., Albiss, B., Aledealat, K., & Alsheyab, F. M. (2012) Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis. World Journal of Surgical Oncology, 10, 62. DOI
  11. Tacar, O., Sriamornsak, P., Dass, C. R. (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. The Journal of Pharmacy and Pharmacology, 65(2), 157–170. DOI
  12. Wang, K., Zhang, X., Liu, Y., Liu, C., Jiang, B., & Jiang, Y. (2014) Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials, 35(30), 8735–8747. DOI
  13. Thorpe, P. E., Chaplin, D. J., & Blakey, D. C. (2003) The first international conference on vascular targeting: meeting overview. Cancer Research, 63(5), 1144–1147
  14. Wang, K., Shen, R., Meng, T., Hu, F., Yuan, H. (2022) Nano-Drug Delivery Systems Based on Different Targeting Mechanisms in the Targeted Therapy of Colorectal Cancer. Molecules (Basel, Switzerland), 27(9), 2981. DOI
  15. Torchilin V. P. (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handbook of Experimental Pharmacology, 197, 3–53. DOI
  16. Cheng, Y., Ji, Y. (2019) RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics. European Journal of Pharmaceutical Sciences, 128, 8–17. DOI
  17. Pisano, M., De Paola, I., Nieddu, V., Sassu, I., Cossu, S., Galleri, G., Del Gatto, A., Budroni, M., Cossu, A., Saviano, M., Palmieri, G., Zaccaro, L., Rozzo, C. (2013) In vitro activity of the αvβ3 integrin antagonist RGDechi-hCit on malignant melanoma cells. Anticancer Research, 33(3), 871–879
  18. Godugu. K., Sudha, T., Davis, P.J., Mousa, S.A. (2021) Nano Diaminopropane tetrac and integrin αvβ3 expression in different cancer types: Anti-cancer efficacy and Safety. Cancer Treat. Res. Commun., 28, 100395. DOI
  19. Li, H., Peng, W., Zhen, Z., Zhang, W., Liao, S., Wu, X., Wang, L., Xuan, A., Gao, Y., & Xu, J. (2023). Integrin αvβ3 and EGFR dual-targeted [64Cu]Cu-NOTA-RGD-GE11 heterodimer for PET imaging in pancreatic cancer mouse model. Nuclear Medicine And biology, 124-125, 108364. DOI
  20. Chen, W., Zou, Y., Zhong, Z., & Haag, R. (2017) Cyclo(RGD)-Decorated Reduction-Responsive Nanogels Mediate Targeted Chemotherapy of Integrin Overexpressing Human Glioblastoma In Vivo. Small, 13(6). DOI
  21. Miura, Y., Takenaka, T., Toh, K., Wu, S., Nishihara, H., Kano, M.R., Ino, Y., Nomoto, T., Matsumoto, Y., Koyama, H. (2013) Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano, 7(10), 8583–8592. DOI
  22. Zhan, C., Gu, B., Xie, C., Li, J., Liu, Y., Lu, W. (2010) Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. Journal of controlled release: official journal of the Controlled Release Society, 143(1), 136–142. DOI
  23. Zhan, C., Wei, X., Qian, J., Feng, L., Zhu, J., Lu, W. (2012) Co-delivery of TRAIL gene enhances the anti-glioblastoma effect of paclitaxel in vitro and in vivo. Journal of Controlled Release, 160(3), 630–636. DOI
  24. Waite, C. L., Roth, C. M. (2009) PAMAM-RGD conjugates enhance siRNA delivery through a multicellular spheroid model of malignant glioma. Bioconjugate Chemistry, 20(10), 1908–1916. DOI
  25. Kostryukova, L.V., Tereshkina, Yu.A., Tikhonova, E.G., Sanzhakov, M.A., Bobrova, D.V., Khudoklinova, Yu.Yu. (2022) Study of the efficiency of cellular accumulation of doxorubicin supplied with a targeted delivery system based on phospholipid nanoparticles with integrin-directed peptide. Biomeditsinskaya Khimiya, 68(6), 437-443. DOI
  26. IC50 Calculator. Retrieved September 2, 2023 from https://www.aatbio.com
  27. Wang, F., Li Y., Shen, Y., Wang, A., Wang, S., Xie, T. (2013) The functions and applications of RGD in tumor therapy and tissue engineering. International Journal of Molecular Sciences, 14(7), 13447-13462. DOI
  28. TerBush, A. A., Hafkamp, F., Lee, H. J., & Coscoy, L. (2018). A Kaposi's Sarcoma-Associated Herpesvirus Infection Mechanism Is Independent of Integrins α3β1, αVβ3, and αVβ5. Journal of Virology, 92(17), e00803-18. DOI
  29. Xiao, Y., Hong, H., Javadi, A., Engle, J. W., Xu, W., Yang, Y., Zhang, Y., Barnhart, T. E., Cai, W., Gong, S. (2012). Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials, 33(11), 3071–3082. DOI
  30. Xiao, Y., Hong, H., Javadi, A., Engle, J.W., Xu, W., Yang, Y., Zhang, Y., Barnhart, T.E., Cai, W., Gong, S. (2012) Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials, 33(11), 3071-3082. DOI
  31. Wang, Y., Hun, W., Ding, B., Chen, D., Cheng, L. (2020) cRGD mediated redox and pH dual responsive poly(amidoamine) dendrimer-poly(ethylene glycol) conjugates for efficiently intracellular antitumor drug delivery. Colloids Surf. B. Biointerfaces, 194, 111195. DOI
  32. Kciuk, M., Gielecińska, A., Mujwar, S., Kołat, D., Kałuzińska-Kołat, Ż., Celik, I., Kontek, R. (2023). Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells, 12(4), 659. DOI
  33. Zhu, L., Lin, M. (2021) The Synthesis of Nano-Doxorubicin and its Anticancer Effect. Anti-cancer agents in medicinal chemistry, 21(18), 2466–2477. DOI
  34. van Tellingen, O., Yetkin-Arik, B., de Gooijer, M.C., Wesseling, P., Wurdinger, T., de Vries, H.E. (2015) Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, 19, 1-12. DOI