Сравнительный анализ биоэлектрокаталитических систем, содержащих цитохром Р450 3А4
##plugins.themes.bootstrap3.article.main##
Аннотация
Описаны разработанные авторами подходы для повышения эффективности электроферментативных реакций, катализируемых цитохромом Р450 3А4. Проведен сравнительный анализ цитохром Р450 3А4-систем (i) при образовании функциональных комплексов гемопротеин-флавиновые нуклеотиды как низкомолекулярные модели NADPH-зависимой цитохром Р450 редуктазы, (ii) при образовании продуктивного фермент-субстратного комплекса до стадии получения электронов, поступающих с электрода, (iii) при включении фермента в нанопоры различной природы на электроде (2D-3D переход). Рассмотрены результаты по электрохимическому восстановлению бактосом как функционально активных моделей микросомальной монооксигеназной системы. Для сравнения результатов, полученных для разных моделей, были исследованы электрохимические и электрокаталитические параметры цитохрома Р450 3A4 и маркерного субстрата эритромицина.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Nikzad, N., Rafiee, M. (2024) Electrochemical Study of Drug Metabolism. Current Opinion in Electrochemistry, 101446. DOI
- Hara, Y., Nagaoka, S. (2019). Pravastatin (Pravachol, Mevalotin). In Drug Discovery in Japan (S. Nagaoka eds.) Springer, Singapore, pp. 35-49. DOI
- Mi, L., Wang, Z., Yang, W., Huan, C., Zhou, B., Hu, Y.; Liu, S. (2023) Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. Trends in Analytical Chemistry, 158, 116791. DOI
- Klyushova, L.S.; Perepechaeva, M.L.; Grishanova, A.Y. (2022) The Role of CYP3A in Health and Disease. Biomedicines, 10, 2686. DOI
- Krishnan, S. (2020) Bioelectrodes for evaluating molecular therapeutic and toxicity properties. Current Opinion in Electrochemistry, 19, 20–26. DOI
- Di Nardo, G., Gilardi, G. (2020) Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity. Trends in Biochemical Sciences, 45(6), 511-525. DOI
- Bernhardt, R., Urlacher, V.B. (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Applied Microbiology and Biotechnology, 98 (14), 6185–6203. DOI
- Sakaki, T. (2012) Practical application of cytochrome P450. Biological and Pharmaceutical Bulletin, 35(6), 844–849. DOI
- Sun, X., Sun, J., Ye, Y., Ji, J., Sheng, L., Yang, D., Sun, X. (2023) Metabolic pathway-based self-assembled Au@MXene liver microsome electrochemical biosensor for rapid screening of aflatoxin B1. Bioelectrochemistry, 151, 108378. DOI
- Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Bulko, T.V., Archakov, A.I. (2018) From electrochemistry to enzyme kinetics of cytochrome P450. Biosensors and Bioelectronics, 15, 192-204. DOI
- Schneider, E., Clark, D. S. (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosensors and Bioelectronics, 39, 1-13, DOI
- Koroleva, P.I, Kuzikov, A.V., Masamrekh, R.A., Filimonov, D.A., Dmitriev, A.V., Zaviyalova, M.G., Rikova, S.M., Shich, E.V., Makhova, A.A., Bulko, T.V., Gilep, A.A., Shumyantseva, V.V. (2021) Modeling of drug-drug interactions between omeprazole and erythromycin in the cytochrome P450-dependent system in vitro. Biomeditsinskaya Khimiya, 15(1), 62–70. DOI
- Gilep, A.A., Guryev, O.V., Usanov, S.A., Estabrook, R.W. (2001) Reconstitution of the enzymatic activities of cytochrome P450s using recombinant flavocytochromes containing rat cytochrome b(5) fused to NADPH–cytochrome P450 reductase with various membrane-binding segments. Archives of Biochemistry and Biophysics, 390(2), 215–221. DOI
- Omura, T., Sato, R. (1964) The Carbon Monoxide-binding Pigment of Liver Microsomes: II. Solubilization, purification, and properties. Journal of Biological Chemistry, 239(7), 2379–2385. DOI
- Nash T. (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochemical Journal, 55(3), 416-421. DOI
- Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Chalenko, Y.M., Vagin, M.Y., Rudakov, Y.O., Shatskaya, M.A., Archakov, A.I. (2011) Electrochemical investigations of cytochromes P450. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1814(1), 94-101. DOI
- Ducharme, J., Auclair, K. (2018) Use of bioconjugation with cytochrome P450 enzymes, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1866(1), 32-51, DOI
- Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Archakov, A.I., Makhova, A.A., Shich, E.V., Kukes, V. (2015) Electrocatalytic cycle of P450 cytochromes: the protective and stimulating roles of antioxidants. RSC Advances, 5(87), 71306-71313. DOI
- Shumyantseva, V.V., Koroleva, P.I., Bulko, T.V., Sergeev, G.V., Usanov, S.A. (2022) Predicting drug-drug interactions by electrochemically driven cytochrome P450 3A4 reactions. Drug Metabolism and Personalized Therapy, 37(3), 241-248. DOI
- Shumyantseva, V.V., Bulko, T.V., Koroleva, P.I., Shikh, E.V., Makhova, A.A., Kisel, M.S., Haidukevich I.V., Gilep A.A. (2022) Human Cytochrome P450 2C9 and its polymorphic modifications: electroanalysis, catalytic properties, and approaches to the regulation of enzymatic activity. Processes, 10, 383. DOI
- Agafonova L.E., Bulko T.V., Kuzikov A.V., Masamrekh R.A., Shumyantseva V.V. (2022) Sensors for analysis of drugs, drug-drug interactions, and catalytic activity of enzymes. Bulletin of Russian State Medical University, 1, 41-46. DOI
- Kuzikov, A., Masamrekh, R., Shkel, T., Strushkevich, N., Gilep, A., Usanov, S., Archakov, A., Shumyantseva V. (2019) Assessment of electrocatalytic hydroxylase activity of cytochrome P450 3A4 (CYP3A4) by means of derivatization of 6β-hydroxycortisol by sulfuric acid for fluorimetric assay. Talanta, 196, 231–236. DOI
- Masamrekh, R.A., Kuzikov, A.V., Haurychenka, Y.I., Shcherbakov, K.A., Veselovsky, A.V., Filimonov, D.A., Dmitriev, A.V., Zavialova, M.G., Gilep, A.A., Shkel, T.V., Strushkevich, N.V., Usanov, S.A., Archakov, A.I., Shumyantseva V.V. (2020) In vitro interactions of abiraterone, erythromycin, and CYP3A4: implications for drug-drug interactions. Fundamental and Clinical Pharmacology, 34, 120-130. DOI
- Makhova, A.A., Shikh, E.V., Bulko, T.V., Gilep ,A.A., Usanov, S.A., Shumyantseva, V.V. (2020) No effect of lipoic acid on catalytic activity of cytochrome P450 3A4. Drug Metabolism and Personalized Therapy, 35(3), 20200105. DOI
- Masamrekh, R., Kuzikov, A., Veselovsky, A., Toropygin, I., Shkel, T., Strushkevich, N., Gilep, A., Usanov, S., Archakov, A., Shumyantseva, V. (2018) 17α-hydroxylase, 17(20)-lyase (CYP17A1) inhibitors – abiraterone and galeterone – interact with human sterol 14α-demethylase (CYP51A1). Journal of Inorganic Biochemistry, 186, 24–33. DOI
- Kuzikov, A.V., Bulko, T.V., Koroleva, P.I., Masamrekh, R.A., Babkina, S.S., Gilep, A.A., Shumyantseva, V.V. (2020) Cytochrome P450 3A4 as a Drug Metabolizing Enzyme: the Role of Sensor System Modifications in Electocatalysis and Electroanalysis. Biomeditsinskaya Khimiya, 14(3), 252–259. DOI
- Shumyantseva, V.V., Agafonova, L.E., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Yuan, Ji., Pergushov, D.V., Sigolaeva, L.V. (2021) Electroanalysis of Biomolecules: Rational Selection of Sensor Construction. Biochemistry (Moscow). Special issue. Biological Chemistry reviews, 86(Suppl.1), S140-S151. DOI
- Guengerich, F.P. (2021) Drug Metabolism: Cytochrome P450, In Reference Module in Biomedical Sciences, Elsevier, Netherlands. DOI
- Lamb, D.C., Waterman, M.R., Kelly, S.L., Guengerich, F.P. (2007) Cytochromes P450 and drug discovery. Current Opinion in Biotechnology, 18(6), 504-512. DOI
- Bavishi, K., Laursen, T., Martinez, K.L., Møller, B.L., Della Pia, E.A. (2016) Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Scientific Reports, 6, 29459. DOI
- Koroleva, P.I., Bulko, T.V., Agafonova, L.E., Shumyantseva, V.V. (2023) Catalytic and Electrocatalytic Mechanisms of Cytochromes P450 in the Development of Biosensors and Bioreactors. Biochemistry (Moscow), 88(10), 1645-1657. DOI
- Shumyantseva V.V., Koroleva P.I., Bulko T.V., Shkel T.V., Gilep A.A., Veselovsky A.V. (2023) Approaches for increasing the electrocatalytic efficiency of Cytochrome P450 3A4. Bioelectrochemistry, 149, 108277. DOI
- Rusling, F., Wang, B., Yun, S. (2008). Electrochemistry of redox enzymes, In Bioelectrochemistry: Fundametals, In Experimental Techniques and Applications (P.N. Bartlett ed.), John Wiley & Sons Ltd., New Jersey, pp. 39–85. DOI
- Gray, J.J. (2004) The interaction of proteins with solid surfaces. Current Opinion in Structural Biology, 14, 110-115. DOI
- Shumyantseva, V.V., Koroleva, P.I., Bulko, T.V., Agafonova, L.E. (2023) Alternative electron sources for cytochrome P450s catalytic cycle: biosensing and biosynthetic application. Processes, 11, 1801. DOI
- Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Philippova, T.A., Koroleva, P.I., Agafonova, L.E., Bulko, T. V., Archakov, A.I. (2022) Enzymology on an electrode and in a nanopore: analysis algorithms, enzyme kinetics and perspectives. BioNanoScience, 12, 1341-1355. DOI
- Shangguan, L., Wei, Y., Liu, X., Yu, J., Liu, S. (2017) Confining a bi-enzyme inside the nanochannels of a porous aluminum oxide membrane for accelerating the enzymatic reactions. Chemical Communications, 53, 2673-2676. DOI
- Mie, Y., Ikegami, M., Komatsu, Y. (2016) Nanoporous Structure of Gold Electrode Fabricated by Anodization and Its Efficacy for Direct Electrochemistry of Human Cytochrome P450. Chemistry Letters, 45, 640–642. DOI
- Dai, Q., Yang, L., Wang, Y., Cao, X., Yao, C., Xu, X. (2020) Surface charge-controlled electron transfer and catalytic behavior of immobilized cytochrome P450 BM3 inside dendritic mesoporous silica nanoparticles. Analytical and Bioanalytical Chemistry, 412, 4703-4712. DOI
- Xu, X., Zheng, Q., Bai, G., Dai, Q., Cao, X., Yao, Y., Liu, S., Yao, C. (2018) Polydopamine functionalized nanoporous graphene foam as nanoreactor for efficient electrode-driven metabolism of steroid hormones. Biosensors and Bioelectronics, 119, 182-190, DOI
- Lu, J., Li, H., Cui, D., Zhang, Y., Liu, S. (2014) Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO₂ nanotube arrays. Analytical Chemistry, 86, 8003–8009. DOI
- Meyer, N., Abrao-Nemeir, I., Janot, J.-M., Torrent, J, Lepoitevin, M, Balme, S (2021) Solid-state and polymer nanopores for protein sensing. Advances in Colloid and Interface Science, 298, 102561. DOI
- Küchler, A., Yoshimoto, M., Luginbühl, S., Mavelli, F., Walde, P. (2016) Enzymatic reactions in confined environments. Nature Nanotechnology, 11, 409-420. DOI
- González-Davis, O., Chauhan, K., Zapian-Merino, S., Vazquez-Duhalt, R. (2020) Bi-enzymatic virus-like bionanoreactors for the transformation of endocrine disruptor compounds. International Journal of Biological Macromolecules, 146, 415-421. DOI
- Kumar, R., Sharma, D., Kumar, V., Kumar, R. (2018) Factors defining the effects of macromolecular crowding on dynamics and thermodynamic stability of heme proteins in-vitro. Archives of Biochemistry and Biophysics, 654, 146–162. DOI
- Shumyantseva, V.V., Koroleva, P.I., Gilep, A.A., Napolskii, K.S., Ivanov, Yu.D., Kanashenko, S.L., Archakov, A.I. (2022) Increasing the efficiency of cytochrome P450 3A4 electrocatalysis using electrode modification with spatially ordered anodic aluminum oxide-based nanostructures for investigation of metabolic transformations of drugs. Doklady Biochemistry and Biophysics, 506, 215-219, DOI
- Koroleva, P.I., Gilep, A.A., Kraevskiy, S.V., Tsybruk, T.V., Shumyantseva, V.V. (2023) Improving the efficiency of electrocatalysis of cytochrome P450 3A4 by modifying the electrode with membrane protein streptolysin O for studying the metabolic transformations of drugs. Biosensors, 13, 457. DOI
- Nerimetla, R., Krishnan, S. (2015) Electrocatalysis by subcellular liver fractions bound to carbon nanostructures for stereoselective green drug metabolite synthesis. Chemical Communications, 51, 11681-11684. DOI
- Xu, X., Bai, G., Song, L., Zheng, Q., Yao, Y., Liu, S., Yao, C. (2017) Fast steroid hormone metabolism assays with electrochemical liver microsomal bioreactor based on polydopamine encapsulated gold-graphene nanocomposite. Electrochimica Acta, 258, 1365-1374. DOI
- Nerimetla, R., Premaratne, G., Liu, H., Krishnan, S. (2018) Improved electrocatalytic metabolite production and drug biosensing by human liver microsomes immobilized on amine-functionalized magnetic nanoparticles. Electrochimica Acta, 280, 101-107. DOI
- Nerimetla, R., Walgama, C., Singh, V., Hartson, S.D., Krishnan, S. (2017) Mechanistic insights on the voltage-driven biocatalysis of a cytochrome P450 bactosomal film on a self-assembled monolayer. ACS Catalysis, 7, 3446-3453. DOI
- Archakov, A.I. (1975) Microsomal oxidation. Nauka, Moscow, 327 p.
- Panicco, P., Castrignanò, S., Sadeghi, S.J., Di Nardo, G., Gilardi, G. (2021) Engineered human CYP2C9 and its main polymorphic variants for bioelectrochemical measurements of catalytic response. Bioelectrochemistry, 138, 107729. DOI
- Walgama, C., Nerimetla, R., Materer, N.F., Schildkraut, D., Elman, J.F., Krishnan, S. (2015) A Simple Construction of Electrochemical Liver Microsomal Bioreactor for Rapid Drug Metabolism and Inhibition Assays. Analytical Chemistry, 87(9), 4712–4718. DOI