Возрастные зависимости длин теломер клеток мышечной ткани хищных видов рыб с потенциально различным механизмом старения
##plugins.themes.bootstrap3.article.main##
Аннотация
Механизмы старения отличаются и имеют свои особенности как у рыб и млекопитающих, так и у различных видовых групп рыб, поэтому представляют научный интерес. Длина теломер является показателем теоретического числа клеточных циклов, которые могут пройти клетки той или иной ткани, следовательно, возрастная динамика длины теломер характеризует изменение способности ткани к регенерации и необходима для описания механизма старения. В данной работе эмпирически получены линейные зависимости длин теломер мышечной ткани щуки (Esox lucius) и судака (Sander lucioperca) от возраста рыбы для широких возрастных выборок особей обоих полов. Достоверно выявленная разница зависимостей длины теломер от возраста по угловым коэффициентам свидетельствует о разной степени снижения способности к регенерации мышечной ткани со временем, что согласуется с обнаруженными ранее физиологическими особенностями этой ткани у щуки. У обоих исследуемых видов рыб длина теломер у самок уменьшается с возрастом значительно медленнее, чем у самцов, что является общей чертой в механизмах старения большинства позвоночных.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Pamplona, R., Jové, M., Gómez, J., Barja, G. (2023) Programmed versus non-programmed evolution of aging. What is the evidence? Exp. Gerontol., 175, 112162. DOI
- Olshansky, S.J. (2018) From lifespan to healthspan. JAMA, 320(13), 1323–1324. DOI
- Reznick, D., Ghalambor, C., Nunney, L. (2002) The evolution of senescence in fish. Mech. Ageing Dev., 123(7), 773–789. DOI
- Bidder, G.P. (1932) Senescence. Br. Med. J., 2(3742), 583–585. DOI
- Lorenzen, K. (2022) Size- and age-dependent natural mortality in fish populations: Biology, models, implications, and a generalized length-inverse mortality paradigm. Fisheries Research., 255, 106454. DOI
- Sauer, D.J., Heidinger, B.J., Kittilson, J.D., Lackmann, A.R, Clark, M.E. (2021) No evidence of physiological declines with age in an extremely long-lived fish. Sci. Rep., 11(1), 9065. DOI
- Finch, C.E. (1990) Longevity, Senescence, and the Genome. Chicago and London: The University of Chicago Press, 938 p.
- Patnaik, B.K., Mahapatro, N., Jena, B.S. (1994) Ageing in fishes. Gerontology, 40(2–4), 113–132. DOI
- Mattern, K.A., Swiggers, S.J., Nigg, A.L., Löwenberg, B., Houtsmuller, A.B., Zijlmans, J.M. (2004) Dynamics of protein binding to telomeres in living cells: Implications for telomere structure and function. Mol. Cell. Biol., 24(12), 5587–5594. DOI
- Rubtsova, M.P., Vasilkova, D.P., Malyavko, A.N., Naraikina, Y.V., Zvereva, M.I., Dontsova, O.A. (2012) Telomere lengthening and other functions of telomerase. Acta Naturae, 4(2), 44–61. DOI
- Forsman, A., Tibblin, P., Berggren, H., Nordahl, O., Koch-Schmidt, P., Larsson, P. (2015) Pike Esox lucius as an emerging model organism for studies in ecology and evolutionary biology: A review. J. Fish Biol., 87(2), 472–479. DOI
- Frost, W.E., Kipling, C. (1959) The determination of the age and growth of pike (Esox lucius L.) from scales and opercular bones. ICES J. Marine Sci., 24(2), 314–341. DOI
- Pravdin, I.F. (1966) Rukovodstvo po izucheniyu ryb. Pishchevaya promyshlennost’, 374 p.
- Steinmetz, B., Müller, R. (1991) An atlas of fish scales and other bony structures used for age determination: Non-salmonid species found in European fresh waters. Samara Publishing, 51 p.
- Cawthon, R.M. (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res., 30(10), e47. DOI
- O'Callaghan, N.J., Fenech, M. (2011) A quantitative PCR method for measuring absolute telomere length. Biological Procedures Online, 13, 3. DOI
- Gil, M.E., Coetzer, T.L. (2004) Real-time quantitative PCR of telomere length. Mol. Biotechnol., 27(2), 169–172. DOI
- Akiyama, M., Yamada, O., Kanda, N., Akita, S., Kawano, T., Ohno, T., Mizoguchi, H., Eto, Y., Anderson, K.C., Yamada, H. (2002) Telomerase overexpression in K562 leukemia cells protects against apoptosis by serum deprivation and double-stranded DNA break inducing agents, but not against DNA synthesis inhibitors. Cancer Lett., 178(2), 187–197. DOI
- Chaddock, R.E. (1925) Principles and Methods of Statistics. Houghton Mifflin, 471 p.
- Aix, E., Gallinat, A., Flores, I. (2018) Telomeres and telomerase in heart regeneration. Differentiation, 100, 26–30. DOI
- Simide, R., Angelier, F., Gaillard, S., Stier, A. (2016) Age and heat stress as determinants of telomere length in a long-lived fish, the Siberian sturgeon. Physiol. Biochem. Zool., 89(5), 441–447. DOI
- Lund, T.C., Glass, T.J., Tolar, J., Blazar, B.R. (2009) Expression of telomerase and telomere length are unaffected by either age or limb regeneration in Danio rerio. PLoS ONE, 4(11), e7688. DOI
- Ocalewicz, K. (2013) Telomeres in fishes. Cytogenetic Genome Res., 141(2–3), 114–125. DOI
- Anchelin, M., Murcia, L., Alcaraz-Pérez, F., García-Navarro, E.M., Cayuela, M.L. (2011) Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS ONE., 6(2), e16955. DOI
- Lopez de Abechuco, E., Hartmann, N., Soto, M., Díez, G. (2016) Assessing the variability of telomere length measures by means of Telomeric Restriction Fragments (TRF) in different tissues of cod Gadus morhua. Gene Reports, 5, 117–125. DOI
- Hatakeyama, H., Nakamura, K.-I., Izumiyama-Shimomura, N., Ishii, A., Tsuchida, S., Takubo, K., Ishikawa, N. (2008) The teleost Oryzias latipes shows telomere shortening with age despite considerable telomerase activity throughout life. Mech. Ageing Dev., 129(9), 550–557. DOI
- Lin, J., Epel, E., Cheon, J., Kroenke, C., Sinclair, E., Bigos, M., Wolkowitz, O., Mellon, S., Blackburn, E. (2010) Analyses and comparisons of telomerase activity and telomere length in human T and B cells: Insights for epidemiology of telomere maintenance. J. Immunol. Methods, 352(1–2), 71–80. DOI
- Conklin, Q.A., Crosswell, A.D., Saron, C.D., Epel, E.S. (2019) Meditation, stress processes, and telomere biology. Curr. Opin. Psychol., 28, 92–101. DOI
- Clough, S.C., Lee-Elliott, I.E., Turnpenny, A.W.H., Holden, S.D.J., Hinks, C. (2004) Swimming speeds in fish: phase 2. Environment Agency, 93 p.
- Mikhailova, M.V., Belyaeva, N.F., Kozlova, N.I., Zolotarev, K.V., Mikhailov, A.N., Berman A.E., Archakov A.I. (2017) Protective action of fish muscle extracts against cellular senescence induced by oxidative stress. Biomeditsinskaya Khimiya, 63(4), 351–355. DOI
- Lapin, A.A., Zelenkov, V.N., Zolotarev, K.V., Mikhailov, A.N., Bodoev, N.V., Mikhaylova, M.V. (2021) Total antioxidant activity of extraction products of muscles and roe of northern pike (Esox lucius). Butlerov Communications C, 1(1), 7. DOI
- Ludlow, A.T., Spangenburg, E.E., Chin, E.R., Cheng, W.-H., Roth, S.M. (2014) Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers. J. Gerontol. A Biol. Sci. Med. Sci., 69(7), 821–830. DOI
- Dantzer, B., Fletcher, Q.E. (2015) Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones. Exp. Gerontol., 71, 38–47. DOI
- Adwan Shekhidem, H., Sharvit, L., Leman, E., Manov, I., Roichman, A., Holtze, S., Huffman, D.M., Cohen, H.Y., Bernd Hildebrandt, T., Shams, I., Atzmon, G. (2019) Telomeres and longevity: Acause or an effect? Int. J. Mol. Sci., 20(13), 3233. DOI
- Beirne, C., Delahay, R., Hares, M., Young, A. (2014) Age-related declines and disease-associated variation in immune cell telomere length in a wild mammal. PLoS ONE, 9(9), e108964. DOI
- Leonida, S.R.L., Bennett, N.C., Leitch, A.R., Faulkes, C.G. (2020) Patterns of telomere length with age in African mole-rats: New insights from quantitative fluorescence in situ hybridisation (qFISH). PeerJ, 8, e10498. DOI
- Gardner, M., Bann, D., Wiley, L., Cooper, R., Hardy, R., Nitsch, D., Martin-Ruiz, C., Shiels, P., Sayer, A.A., Barbieri, M., Bekaert, S., Bischoff, C., Brooks-Wilson, A., Chen, W., Cooper, C., Christensen, K., de Meyer, T., Deary, I., Der G., Diez Roux, A., Fitzpatrick, A., Hajat, A., Halaschek-Wiener, J., Harris, S, Hunt, S.C., Jagger, C., Jeon, H.-S., Kaplan, R., Kimura, M., Lansdorp, P., Li, C., Maeda, T., Mangino, M., Nawrot, T.S., Nilsson, P., Nordfjall, K., Paolisso, G., Ren, F., Riabowol, K., Robertson, T., Roos, G., Staessen, J.A., Spector, T., Tang, N., Unryn, B., van der Harst, P., Woo, J., Xing, C., Yadegarfar, M.E., Park, J.Y., Young, N., Kuh, D., von Zglinicki, T., Ben-Shlomo, Y., Halcyon study team (2014) Gender and telomere length: Systematic review and meta-analysis. Exp. Gerontol., 51, 15–27. DOI