MetaPASS 2024: анализ вероятных спектров биологической активности лекарственно-подобных органических соединений с учетом их биотрансформации
##plugins.themes.bootstrap3.article.main##
Аннотация
В организме человека фармакологические вещества подвергаются биотрансформации, поэтому при исследованиях и разработке лекарств необходимо учитывать спектры биологической активности их метаболитов. Ранее нами было создано веб-приложение MetaPASS для анализа вероятных спектров биологической активности лекарственно-подобных органических соединений с учетом их метаболизма. В данной работе приведено описание новой версии MetaPASS 2024 (https://www.way2drug.com/metapass), в которой увеличено количество известных схем метаболизма, добавлены процедуры поиска по структурному сходству на основе дескрипторов MNA и QNA и поиска соединений с наибольшей оценкой вероятности проявления целевой биологической активности, а также реализовано представление спектра биологической активности в виде цветовых карт.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- DiMasi, J.A., Grabowski, H.G., Hansen, R.W. (2016) Innovation in thepharmaceutical industry: New estimates of R&D costs. J. Health Econ. 47,20–33. DOI
- Martinez-Mayorga, K., Madariaga-Mazon, A., Medina-Franco, J.L.,Maggiora, G. (2020) The impact of chemoinformatics on drug discovery in thepharmaceutical industry. Expert Opin. Drug Discov. 15(3), 293–306. DOI
- Muratov, E.N., Bajorath, J., Sheridan, R.P., Tetko, I. V, Filimonov, D.,Poroikov, V., Oprea, T.I., Baskin, I.I., Varnek, A., Roitberg, A., Isayev, O.,Curtarolo, S., Fourches, D., Cohen, Y., Aspuru-Guzik, A., Winkler, D.A.,Agrafiotis, D., Cherkasov, A., Tropsha, A. (2020) QSAR without borders. Chem.Soc. Rev. 49(11), 3525–3564. DOI
- Pushpakom, S., Iorio, F, Eyer,s P.A., Escott, K.J., Hopper, S., Wells, A., Doig,A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla,D., Pirmohamed, M. (2019) Drug repurposing: progress, challenges andrecommendations. Nat. Rev. Drug Discov. 18, 41–58. DOI
- Eno, M.R., Cameron, M.D. (2015) Gauging reactive metabolites in druginducedtoxicity. Curr. Med. Chem. 22 (4), 465–489. DOI
- Rudik, A.V., Dmitriev, A.V., Lagunin, A.A., Filimonov, D.A., Poroikov, V.V.(2021) MetaPASS: A Web Application for Analyzing the Biological ActivitySpectrum of Organic Compounds Taking into Account their Biotransformation.Mol. Inform. 40(4), e2000231.
- Rudik, A.V., Dmitriev, A.V., Lagunin, A.A., Filimonov, D.A., Poroikov, V.V.(2023) MetaTox 2.0: Estimating the Biological Activity Spectra of Drug-likeCompounds Taking into Account Probable Biotransformations. ACS Omega.8(48), 45774-45778. DOI
- Filimonov, D.A., Druzhilovskiy, D.S., Lagunin, A.A., Gloriozova, T.A.,Rudik, A.V, Dmitriev A.V, Pogodin P.V., Poroikov, V.V. (2018) ComputeraidedPrediction of Biological Activity Spectra for Chemical Compounds:Opportunities and Limitations, Biomedical Chemistry: Research and Methods,1(1), e00004. DOI
- MarvinJS-demo. Chemaxon. Retrieved May 17, 2025, from: https://marvinjsdemo.chemaxon.com/latest/
- Filimonov, D.A., Zakharov, A.V., Lagunin, A.A., Poroikov, V.V. (2009)QNA-based ‘Star Track’ QSAR approach. SAR QSAR Environ Res. 20(7-8),679-709. DOI
- Mendez, D., Gaulton, A., Bento, A.P., Chambers, J., De Veij, M., Félix, E.,Magariños, M.P., Mosquera, J.F., Mutowo, P., Nowotka, M., Gordillo-Marañón,M., Hunter, F., Junco, L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F.,Bosc, N., Radoux, C.J., Segura-Cabrera, A., Hersey, A., Leach, A.R. (2018)ChEMBL : towards direct deposition of bioassay data. Nucleic Acids Res.,47(1), 930-940. DOI
- Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo E.J., Marcu, A., Grant, J.R.,Sajed, T., Johnson, D., Li C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu Y.,Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A.,Knox, C., Wilson, M. (2018), DrugBank 5.0 : a major update to the DrugBankdatabase for 2018. Nucleic Acids Res., 46 (1), 1074–1082.
- Djoumbou-Feunang, Y., Fiamoncini, J., Gil-de-la-Fuente, A., Greiner,R., Manach, C., Wishart, D.S. (2019) BioTransformer: a comprehensivecomputational tool for small molecule metabolism prediction and metaboliteidentification. J. Cheminform. 11, 2. DOI
- Dunlop, B.W., Nemeroff, C.B.(2007) The Role of Dopamine in thePathophysiology of Depression. Arch Gen Psychiatry, 64(3), 327–337. DOI
- Lagunin, A.A., Romanova, M.A., Zadorozhny, A.D., Kurilenko, N.S., Shilov,B.V, Pogodin, P.V., Ivanov, S.M., Filimonov, D.A., Poroikov, V. V. (2018)Comparison of Quantitative and Qualitative (Q)SAR Models Created for thePrediction of K(i) and IC(50) Values of Antitarget Inhibitors. Front. Pharmacol.9, 1136. DOI
- The JavaScript library for data visualization. Retrieved May 17, 2025, from:https://d3js.org/
- Johnson, B., Shneiderman, B. (1991) Tree-maps: a space-filling approach tothe visualization of hierarchical information structures. Proceeding Visualization’91, 284–291. DOI
- Lerma, E.V., Wilson, D.J. (2022) Finerenone: a mineralocorticoid receptorantagonist for the treatment of chronic kidney disease associated with type 2diabetes. Expert Rev. Clin. Pharmacol. 15, 501–513. DOI
- Latchman J., Guastella A., Tofthagen C. (2014) 5-Fluorouracil toxicity anddihydropyrimidine dehydrogenase enzyme: implications for practice. Clin JOncol Nurs. 18(5), 581-585. DOI
- Clementi, N., Scagnolari, C., D’Amore, A., Palombi, F., Criscuolo, E.,Frasca, F., Pierangeli, A., Mancini, N., Antonelli, G., Clementi, M., Carpaneto,A., Filippini, A. (2021) Naringenin is a powerful inhibitor of SARS-CoV-2infection in vitro. Pharmacol Res., 163, 105255. DOI
- Agrawal, P.K., Agrawal, C., Blunden, G. (2021) PharmacologicalSignificance of Hesperidin and Hesperetin, Two Citrus Flavonoids, asPromising Antiviral Compounds for Prophylaxis Against and CombatingCOVID-19, Nat. Prod. Commun. 16. DOI
- Bílek, R., Danzig, V., Grimmichová, T. (2022) Antiviral activity ofamiodarone in SARS-CoV-2 disease. Physiol. Res. 71, 869–875. DOI
- Gasm,i A., Mujawdiya, P.K., Lysiuk, R., Shanaida, M., Peana, M., GasmiBenahmed, A., Beley, N., Kovalska, N., Bjørklund, G. (2022) Quercetin in thePrevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2.Pharmaceuticals (Basel). 15(9), 1049. DOI
- Roy, A.V., Chan, M., Banadyga, L., He, S., Zhu, W., Chrétien, M., Mbikay,M. (2024) Quercetin inhibits SARS-CoV-2 infection and prevents syncytiumformation by cells co-expressing the viral spike protein and human ACE2. Virol.J. 21, 29. DOI