Влияние размера цикла и структуры спейсера конъюгатов такрина и его циклопентильного гомолога с 5-(4-трифторметил-фениламино)-1,2,4-тиадиазолом на спектр биологической активности
##plugins.themes.bootstrap3.article.main##
Аннотация
Синтезированы конъюгаты такрина и его циклопентильного аналога с 5-(4-трифторметил-фениламино)-1,2,4- тиадиазолом, объединённые двумя разными спейсерами – пентиламинопропановым и пентиламинопропеновым, исследован их эстеразный профиль, способность вытеснять пропидий из периферического анионного сайта (ПАС) ацетилхолинэстеразы (АХЭ) и антиоксидантная активность в тесте АБТС. Полученные соединения эффективно ингибируют холинэстеразы с преимущественным действием на бутирилхолинэстеразу, вытесняют пропидий из ПАС АХЭ из Electrophorus electricus (EeАХЭ) и обладают высокой радикал-связывающей способностью. Показано, что в зависимости от строения спейсера, а именно наличия в нем пропенаминового или пропанаминового фрагмента, меняется спектр биологической активности конъюгатов.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Hamulakova, S., Poprac, P., Jomova, K., Brezova, V., Lauro, P., Drostinova, L., Jun, D., Sepsova, V., Hrabinova, M., Soukup, O., Kristian, P., Gazova, Z., Bednarikova, Z., Kuca, K., & Valko, M. (2016). Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer's disease using multifunctional tacrine-coumarin hybrid molecules. Journal of Inorganic Biochemistry, 161, 52-62. DOI
- Zhang, C., Du, Q.-Y., Chen, L.-D., Wu, W.-H., Liao, S.-Y., Yu, L.-H., & Liang, X.-T. (2016). Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease. European Journal of Medicinal Chemistry, 116, 200-209. DOI
- Bachurin, S. O., Bovina, E. V., & Ustyugov, A. A. (2017). Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends. Medicinal Research Reviews, 37(5), 1186-1225. DOI
- Rosini, M., Simoni, E., Minarini, A., & Melchiorre, C. (2014). Multi-target design strategies in the context of Alzheimer's disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochemical Research, 39(10), 1914-1923. DOI
- Minarini, A., Milelli, A., Simoni, E., Rosini, M., Bolognesi, M., Marchetti, C., & Tumiatti, V. (2013). Multifunctional Tacrine Derivatives in Alzheimer's Disease. Current Topics in Medicinal Chemistry, 13(15), 1771-1786. DOI
- Guzior, N., Wi.eckowska, A., Panek, D., & Malawska, B. (2014). Recent Development of Multifunctional Agents as Potential Drug Candidates for the Treatment of Alzheimer’s Disease. Current Medicinal Chemistry, 22(3), 373-404. DOI
- Tonelli, M., Catto, M., Tasso, B., Novelli, F., Canu, C., Iusco, G., Pisani, L., Stradis, A. D., Denora, N., Sparatore, A., Boido, V., Carotti, A., & Sparatore, F. (2015). Multitarget Therapeutic Leads for Alzheimer's Disease: Quinolizidinyl Derivatives of Bi- and Tricyclic Systems as Dual Inhibitors of Cholinesterases and beta-Amyloid (Abeta) Aggregation. ChemMedChem, 10(6), 1040-1053. DOI
- Li, Y., Geng, J., Liu, Y., Yu, S., & Zhao, G. (2013). Thiadiazole-a promising structure in medicinal chemistry. ChemMedChem, 8(1), 27-41. DOI
- Castro, A., Castano, T., Encinas, A., Porcal, W., & Gil, C. (2006). Advances in the synthesis and recent therapeutic applications of 1,2,4-thiadiazole heterocycles. Bioorganic & Medicinal Chemistry, 14(5), 1644-1652. DOI
- Martinez, A., Fernandez, E., Castro, A., Conde, S., Rodriguez-Franco, I., Baños, J.-E., & Badia, A. (2000). N-Benzylpiperidine derivatives of 1,2,4-thiadiazolidinone as new acetylcholinesterase inhibitors. European Journal of Medicinal Chemistry, 35(10), 913-922. DOI
- Porcal, W., Hernandez, P., Gonzalez, M., Ferreira, A., Olea-Azar, C., Cerecetto, H., & Castro, A. (2008). Heteroarylnitrones as drugs for neurodegenerative diseases: synthesis, neuroprotective properties, and free radical scavenger properties. Journal of Medicinal Chemistry, 51(19), 6150-6159. DOI
- Makhaeva, G. F., Proshin, A. N., Boltneva, N. P., Rudakova, E. V., Kovaleva, N. V., Serebryakova, O. G., Serkov, I. V., & Bachurin, S. O. (2016). 1,2,4-Thiadiazoles as promising multifunctional agents for treatment of neurodegenerative diseases. Russian Chemical Bulletin, 65(6), 1586-1591. DOI
- Makhaeva, G. F., Grigoriev, V. V., Proshin, A. N., Kovaleva, N. V., Rudakova, E. V., Boltneva, N. P., Serkov, I. V., & Bachurin, S. O. (2017). Novel Conjugates of Tacrine with 1,2,4,-Thiadiazole as Highly Effective Cholinesterase Inhibitors, Blockers of NMDA Receptors, and Antioxidants Doklady Biochemistry and Biophysics, 477, 405–409. DOI
- Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95.
- Sterri, S. H., Johnsen, B. A., & Fonnum, F. (1985). A radiochemical assay method for carboxylesterase, and comparison of enzyme activity towards the substrates methyl 1-14C] butyrate and 4-nitrophenyl butyrate. Biochemical Pharmacology, 34(15), 2779-2785.
- Taylor, P., Lwebuga-Mukasa, J., Lappi, S., & Rademacher, J. (1974). Propidium—a Fluorescence Probe for a Peripheral Anionic Site on Acetylcholinesterase. Molecular Pharmacology, 10(4), 703-708.
- Taylor, P., & Lappi, S. (1975). Interaction of fluorescence probes with acetylcholinesterase. Site and specificity of propidium binding. Biochemistry, 14(9), 1989-1997. DOI
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. DOI
- Szymanski, P., Laznickova, A., Laznicek, M., Bajda, M., Malawska, B., Markowicz, M., & Mikiciuk-Olasik, E. (2012). 2,3-dihydro-1H-cyclopenta[b]quinoline derivatives as acetylcholinesterase inhibitors-synthesis, radiolabeling and biodistribution. International Journal of Molecular Sciences, 13(8), 10067-10090. DOI
- Serkov, I. V., Proshin, A. N., Petrova, L. N., & Bachurin, S. O. (2010). Novel 1,2,4-thiadiazoles with an NO-producing fragment. Doklady Chemistry, 435(2), 311-313. DOI
- Mesulam, M.-M., Guillozet, A., Shaw, P., Levey, A., Duysen, E.G., & Lockridge, O. (2002) . Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience, 110 (4), 627-639 DOI
- Nordberg, A., Ballard, C., Bullock, R., Darreh-Shori, T., & Somogyi, M. (2013). A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease. The Primary Care Companion for CNS Disorders, 15(2). DOI
- Lane, R. M., Potkin, S. G., & Enz, A. (2006). Targeting acetylcholinesterase and butyrylcholinesterase in dementia. The International Journal of Neuropsychopharmacology, 9(1), 101-124. DOI
- Greig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q. S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., & Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer b-amyloid peptide in rodent. Proceedings of the National Academy of Sciences, 102(47), 17213-17218. DOI
- Inestrosa, N. C., Dinamarca, M. C., & Alvarez, A. (2008). Amyloid-cholinesterase interactions. Implications for Alzheimer's disease. The FEBS journal, 275(4), 625-632. DOI
- Grigoriev, V. V., Makhaeva, G. F., Proshin, A. N., Kovaleva, N. V., Rudakova, E. V., Boltneva, N. P., Gabrel´yan, A. V., Lednev, B. V., & Bachurin, S. O. (2017). 1,2,4-Thiadiazole derivatives as effective NMDA receptor blockers with anticholinesterase activity and antioxidant properties. Russian Chemical Bulletin, 66(7), 1308-1313. DOI
- Proshin, A. N., Serkov, I. V., Petrova, L. N., & Bachurin, S. O. (2014). 5-Amino-3-(2-aminopropyl)-1,2,4-thiadiazoles as the basis of hybrid multifunctional compounds. Russian Chemical Bulletin, 63(5), 1148-1152. DOI