Влияние размера цикла и структуры спейсера конъюгатов такрина и его циклопентильного гомолога с 5-(4-трифторметил-фениламино)-1,2,4-тиадиазолом на спектр биологической активности

##plugins.themes.bootstrap3.article.main##

Н.В. Ковалёва
А.Н. Прошин
Е.В. Рудакова
Н.П. Болтнева
И.В. Серков
Г.Ф. Махаева

Аннотация

Синтезированы конъюгаты такрина и его циклопентильного аналога с 5-(4-трифторметил-фениламино)-1,2,4- тиадиазолом, объединённые двумя разными спейсерами – пентиламинопропановым и пентиламинопропеновым, исследован их эстеразный профиль, способность вытеснять пропидий из периферического анионного сайта (ПАС) ацетилхолинэстеразы (АХЭ) и антиоксидантная активность в тесте АБТС. Полученные соединения эффективно ингибируют холинэстеразы с преимущественным действием на бутирилхолинэстеразу, вытесняют пропидий из ПАС АХЭ из Electrophorus electricus (EeАХЭ) и обладают высокой радикал-связывающей способностью. Показано, что в зависимости от строения спейсера, а именно наличия в нем пропенаминового или пропанаминового фрагмента, меняется спектр биологической активности конъюгатов.

##plugins.themes.bootstrap3.article.details##

Как цитировать
Ковалёва N., Прошин A., Рудакова E., Болтнева N., Серков I., & Махаева G. (2018). Влияние размера цикла и структуры спейсера конъюгатов такрина и его циклопентильного гомолога с 5-(4-трифторметил-фениламино)-1,2,4-тиадиазолом на спектр биологической активности. Biomedical Chemistry: Research and Methods, 1(3), e00027. https://doi.org/10.18097/BMCRM00027
Раздел
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Библиографические ссылки

  1. Hamulakova, S., Poprac, P., Jomova, K., Brezova, V., Lauro, P., Drostinova, L., Jun, D., Sepsova, V., Hrabinova, M., Soukup, O., Kristian, P., Gazova, Z., Bednarikova, Z., Kuca, K., & Valko, M. (2016). Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer's disease using multifunctional tacrine-coumarin hybrid molecules. Journal of Inorganic Biochemistry, 161, 52-62. DOI
  2. Zhang, C., Du, Q.-Y., Chen, L.-D., Wu, W.-H., Liao, S.-Y., Yu, L.-H., & Liang, X.-T. (2016). Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease. European Journal of Medicinal Chemistry, 116, 200-209. DOI
  3. Bachurin, S. O., Bovina, E. V., & Ustyugov, A. A. (2017). Drugs in Clinical Trials for Alzheimer's Disease: The Major Trends. Medicinal Research Reviews, 37(5), 1186-1225. DOI
  4. Rosini, M., Simoni, E., Minarini, A., & Melchiorre, C. (2014). Multi-target design strategies in the context of Alzheimer's disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochemical Research, 39(10), 1914-1923. DOI
  5. Minarini, A., Milelli, A., Simoni, E., Rosini, M., Bolognesi, M., Marchetti, C., & Tumiatti, V. (2013). Multifunctional Tacrine Derivatives in Alzheimer's Disease. Current Topics in Medicinal Chemistry, 13(15), 1771-1786. DOI
  6. Guzior, N., Wi.eckowska, A., Panek, D., & Malawska, B. (2014). Recent Development of Multifunctional Agents as Potential Drug Candidates for the Treatment of Alzheimer’s Disease. Current Medicinal Chemistry, 22(3), 373-404. DOI
  7. Tonelli, M., Catto, M., Tasso, B., Novelli, F., Canu, C., Iusco, G., Pisani, L., Stradis, A. D., Denora, N., Sparatore, A., Boido, V., Carotti, A., & Sparatore, F. (2015). Multitarget Therapeutic Leads for Alzheimer's Disease: Quinolizidinyl Derivatives of Bi- and Tricyclic Systems as Dual Inhibitors of Cholinesterases and beta-Amyloid (Abeta) Aggregation. ChemMedChem, 10(6), 1040-1053. DOI
  8. Li, Y., Geng, J., Liu, Y., Yu, S., & Zhao, G. (2013). Thiadiazole-a promising structure in medicinal chemistry. ChemMedChem, 8(1), 27-41. DOI
  9. Castro, A., Castano, T., Encinas, A., Porcal, W., & Gil, C. (2006). Advances in the synthesis and recent therapeutic applications of 1,2,4-thiadiazole heterocycles. Bioorganic & Medicinal Chemistry, 14(5), 1644-1652. DOI
  10. Martinez, A., Fernandez, E., Castro, A., Conde, S., Rodriguez-Franco, I., Baños, J.-E., & Badia, A. (2000). N-Benzylpiperidine derivatives of 1,2,4-thiadiazolidinone as new acetylcholinesterase inhibitors. European Journal of Medicinal Chemistry, 35(10), 913-922. DOI
  11. Porcal, W., Hernandez, P., Gonzalez, M., Ferreira, A., Olea-Azar, C., Cerecetto, H., & Castro, A. (2008). Heteroarylnitrones as drugs for neurodegenerative diseases: synthesis, neuroprotective properties, and free radical scavenger properties. Journal of Medicinal Chemistry, 51(19), 6150-6159. DOI
  12. Makhaeva, G. F., Proshin, A. N., Boltneva, N. P., Rudakova, E. V., Kovaleva, N. V., Serebryakova, O. G., Serkov, I. V., & Bachurin, S. O. (2016). 1,2,4-Thiadiazoles as promising multifunctional agents for treatment of neurodegenerative diseases. Russian Chemical Bulletin, 65(6), 1586-1591. DOI
  13. Makhaeva, G. F., Grigoriev, V. V., Proshin, A. N., Kovaleva, N. V., Rudakova, E. V., Boltneva, N. P., Serkov, I. V., & Bachurin, S. O. (2017). Novel Conjugates of Tacrine with 1,2,4,-Thiadiazole as Highly Effective Cholinesterase Inhibitors, Blockers of NMDA Receptors, and Antioxidants Doklady Biochemistry and Biophysics, 477, 405–409. DOI
  14. Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88-95.
  15. Sterri, S. H., Johnsen, B. A., & Fonnum, F. (1985). A radiochemical assay method for carboxylesterase, and comparison of enzyme activity towards the substrates methyl 1-14C] butyrate and 4-nitrophenyl butyrate. Biochemical Pharmacology, 34(15), 2779-2785.
  16. Taylor, P., Lwebuga-Mukasa, J., Lappi, S., & Rademacher, J. (1974). Propidium—a Fluorescence Probe for a Peripheral Anionic Site on Acetylcholinesterase. Molecular Pharmacology, 10(4), 703-708.
  17. Taylor, P., & Lappi, S. (1975). Interaction of fluorescence probes with acetylcholinesterase. Site and specificity of propidium binding. Biochemistry, 14(9), 1989-1997. DOI
  18. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. DOI
  19. Szymanski, P., Laznickova, A., Laznicek, M., Bajda, M., Malawska, B., Markowicz, M., & Mikiciuk-Olasik, E. (2012). 2,3-dihydro-1H-cyclopenta[b]quinoline derivatives as acetylcholinesterase inhibitors-synthesis, radiolabeling and biodistribution. International Journal of Molecular Sciences, 13(8), 10067-10090. DOI
  20. Serkov, I. V., Proshin, A. N., Petrova, L. N., & Bachurin, S. O. (2010). Novel 1,2,4-thiadiazoles with an NO-producing fragment. Doklady Chemistry, 435(2), 311-313. DOI
  21. Mesulam, M.-M., Guillozet, A., Shaw, P., Levey, A., Duysen, E.G., & Lockridge, O. (2002) . Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience, 110 (4), 627-639 DOI
  22. Nordberg, A., Ballard, C., Bullock, R., Darreh-Shori, T., & Somogyi, M. (2013). A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease. The Primary Care Companion for CNS Disorders, 15(2). DOI
  23. Lane, R. M., Potkin, S. G., & Enz, A. (2006). Targeting acetylcholinesterase and butyrylcholinesterase in dementia. The International Journal of Neuropsychopharmacology, 9(1), 101-124. DOI
  24. Greig, N. H., Utsuki, T., Ingram, D. K., Wang, Y., Pepeu, G., Scali, C., Yu, Q. S., Mamczarz, J., Holloway, H. W., Giordano, T., Chen, D., Furukawa, K., Sambamurti, K., Brossi, A., & Lahiri, D. K. (2005). Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer b-amyloid peptide in rodent. Proceedings of the National Academy of Sciences, 102(47), 17213-17218. DOI
  25. Inestrosa, N. C., Dinamarca, M. C., & Alvarez, A. (2008). Amyloid-cholinesterase interactions. Implications for Alzheimer's disease. The FEBS journal, 275(4), 625-632. DOI
  26. Grigoriev, V. V., Makhaeva, G. F., Proshin, A. N., Kovaleva, N. V., Rudakova, E. V., Boltneva, N. P., Gabrel´yan, A. V., Lednev, B. V., & Bachurin, S. O. (2017). 1,2,4-Thiadiazole derivatives as effective NMDA receptor blockers with anticholinesterase activity and antioxidant properties. Russian Chemical Bulletin, 66(7), 1308-1313. DOI
  27. Proshin, A. N., Serkov, I. V., Petrova, L. N., & Bachurin, S. O. (2014). 5-Amino-3-(2-aminopropyl)-1,2,4-thiadiazoles as the basis of hybrid multifunctional compounds. Russian Chemical Bulletin, 63(5), 1148-1152. DOI