Ассоциация NADPH–оксидазы 2 (NOX2) с развитием атопической бронхиальной астмы
##plugins.themes.bootstrap3.article.main##
Аннотация
Фагоцитирующие клетки уничтожают бактерии, аллергены и апоптотические клетки посредством антимикробных реакций, сопряженных с фагоцитозом и включающих генерацию активных форм кислорода (АФК) и доставку гидролитических ферментов из лизосом в фагосому. АФК, продуцируемые NADPH-оксидазой 2 (NOX2), которые задействованы в механизме LC3–ассоциированного фагоцитоза, участвуют в развитии врожденных и адаптивных иммунных реакций, что приводит, в том числе, к ремоделированию дыхательных путей и гиперреактивности. Целью настоящей работы было установление ассоциации NOX2 с отягощенностью протекания атопической бронхиальной астмы (АБА). Уровень АФК определяли в моноцитах здоровых доноров и пациентов с атопической бронхиальной астмой с помощью дигидрородамина-123 (dhr-123). Анализ уровня экспрессии гена NOX2 в моноцитах здоровых доноров и пациентов с атопической бронхиальной астмой проводили методом ОТ–ПЦР. В присутствии PMA (форбол-12-миристат-13-ацетат) происходило значительное увеличение флуоресценции родамина–123 (Rho-123) во всех исследуемых группах. При этом было обнаружено достоверное увеличение медианы флуоресценции Rho-123 в группе с тяжелой АБА по отношению к группе здоровых доноров и пациентов с легкой степенью АБА, а также к группе пациентов со средней степенью АБА. Достоверное увеличение экспрессии гена NOX2 было обнаружено в группах средней и тяжелой степени АБА по сравнению с остальными исследованными группами. Исходя из полученных данных можно предположить, что с увеличением активности NOX2 – ключевого фермента LC3–ассоциированного фагоцитоза – происходит отягощение протекания АБА.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Mak, J.C., Leung, H.C., Ho, S.P., Law, K.W.B., Lam, W.K., Tsang, K.W.T., Ip, M.S.M., Chan–Yeung, M. (2004) Systemic oxidative and antioxidative status in Chinese patients with asthma. J. Allergy Clin. Immunol., 114(2), 260–264. DOI
- Sweet, M.J., Ramnath, D., Singhal, A., Kapetanovic, R. (2024) Inducible antibacterial responses in macrophages. Nature Reviews Immunology, 25(2),92-107. DOI
- Ibragimov, B.R., Skibo, Yu.V., Abramova, Z.I. (2023) Autophagy and LC3–associated phagocytosis: similarities and differences. Medical Immunology (Russia), 25(2), 233–252. DOI
- Kim, B.H., Shenoy, A.R., Kumar, P. (2011) A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science, 332(6030), 717–721. DOI
- Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe T., Akira, S., Noda, T., Yoshimori, T. (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol., 11(4),385–396. DOI
- Qu, J., Li, Y., Zhong, W., Gao, P, Hu, C.J. (2002) Recent developments in the role of reactive oxygen species in allergic, asthma. J. Thorac. Dis., 9(1), E32–E43. DOI
- Michaeloudes, C., Abubakar–Waziri, H., Lakhdar, R., Raby, K., Dixey, P., Adcock, I.M., Mumby, S., Bhavsar, P.K., Chung, K.F. (2022) Molecular mechanisms of oxidative stress in asthma. Molecular Aspects of Medicine, 85,e101026. DOI
- Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., Rubinsztein, D.C. (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology, 12(8), 747-757. DOI
- Ammar, M., Bahloul, N., Amri, O., Omri, R., Ghozzi, H., Kammoun, S., Zeghal, K., Mahmoud, L.B. (2022) Oxidative stress in patients with asthma and its relation to uncontrolled asthma. J. Clin. Lab. Anal., 36(5), e24345. DOI
- Karadogan, B., Beyaz, S., Gelincik, A., Buyukozturk, S., Arda, N. (2022) Evaluation of oxidative stress biomarkers and antioxidant parameters in allergic asthma patients with different level of asthma control. J. Asthma, 59(4),663–672. DOI
- Nadeem, A., Chhabra, S.K., Masood, A., Raj, H.G. (2003) Increased oxidative stress and altered levels of antioxidants in asthma. J. Allergy Clin. Immunol., 111(1), 72–78. DOI
- Asrar, A., Shameem, M., Husain, Q. (2012) Relation of oxidant antioxidant imbalance with disease progression in patients with asthma. Ann. Thorac Med., 7(4), 226–232. DOI
- Anes, A.B., Nasr, H.B., Fetoui, H., Bchir, S., Chahdoura, H., Yacoub, S., Garrouch, A., Benzarti, M., Tabka, Z., Chahed, K. (2015) Alteration in systemic markers of oxidative and antioxidative status in Tunisian patients with asthma: relationships with clinical severity and airflow limitation. J. of Asthma, 53(3),227–237. DOI
- Asare, P.F., Hurtado, P.R., Tran, H.B., Perkins, G.B., Roscioli, E., Hodge,S. (2023) Reduction in Rubicon by cigarette smoke is associated with impaired phagocytosis and occurs through lysosomal degradation pathway. Clinical and Experimental Medicine, 23(7), 4041–4055. DOI
- Levy, M.L., Bacharier, L.B., Bateman, E., Boulet, L.P., Brightling, C., Buhl, R., Brusselle, G., Cruz, A.A., Drazen, J.M., Duijts, L., Fleming, L., Inoue, H., Ko, F.W.S., Krishnan, J.A., Mortimer, K., Pitrez, P.M., Sheikh, A., Yorgancıoğlu, A., Reddel, H.K. (2023) Key recommendations for primary care from the 2022 Global Initiative for Asthma (GINA) update. N.P.J. Prim. Care Respir. Med., 33(1), 7. DOI
- Gassan, D.A., Kotova, O.O., Naumov, D.E., Sugaylo, I.Yu., Gorchakova,Y.G., Sinyuk, A.A. (2020) Comparative characteristics of monocytes isolation conditions by adhesion method for in vitro experiments. Bulletin Physiology and Pathology of Respiration, 78, 128-134. DOI
- Treves, A.J., Yagoda, D., Haimovitz, A., Ramu, N., Rachmilewitz, D., Fuks, Z. (1980) The isolation and purification of human peripheral blood monocytesin cell suspension. J. Immunol., 39(2), 71–80. DOI
- Yang, Y., Zhang, G., Yang, T., Gan, J., Xu, L., Yang, H. (2018) A flow–cytometry–based protocol for detection of mitochondrial ROS production under hypoxia. Star Protocols, 2(2), e100466. DOI
- Assing, K., Laursen, C.B., Campbell, A.J., Beck, H.C., Davidsen, J.R. (2024) Proteome and dihydrorhodamine profiling of bronchoalveolar lavage in patient swith chronic pulmonary aspergillosis. J. Fungi, 10(5), 314. DOI
- Richardson, M.P., Ayliffe, M.J., Helbert, M., Davies, E.G. (1998) A simple flow cytometry assay using dihydrorhodamine for the measurement of the neutrophil respiratory burst in whole blood: comparison with the quantitative nitrobluetetrazolium test. Journal of Immunological Methods, 219(1), 187–193. DOI
- Pioch, J., Blomgran, R. (2022) Optimized flow cytometry protocol for dihydrorhodamine 123–based detection of reactive oxygen species in leukocyte subpopulations in whole blood. Journal of Immunological Methods, 507,e113308. DOI
- Vernon, P.J., Schaub, L.J., Dallelucca, J.J., Pusateri, A.E., Sheppard, F.R. (2015) Rapid detection of neutrophil oxidative burst capacity is predictive of whole blood cytokine responses. PLoS One, 10(12), 663–672. DOI
- Johnstone, A.M., Koh, A., Goldberg, M.B., Glogauer, M. (2007) A hyperactive neutrophil phenotype in patients with refractory periodontitis. J. Periodontol., 78(9), 1788–1794. DOI
- Siddiqi, M., Garcia, Z.C., Stein, D.S., Denny, T.N., Spolarics, Z. (2001) Relationship between oxidative burst activity and CD11b expression inneutrophils and monocytes from healthy individuals: Effects of race and gender. Cytometry, 46(4), 243–246. DOI
- Bylund, J.J., Brown, K.L., Movitz, C., Dahlgren, C., Karlsson, A. (2010) Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for? Free Radic. Biol. Med., 49(12), 1834–1845. DOI
- Kavianpour, M., Moradzadeh, K., Muhammadnejad, S., Jabbarpour, Z., Khorsand, A.A., Aghayan, S., Vasei, M., Verdi, J. (2022) Flow cytometric measurement of reactive oxygen species to assess the effects of preconditioning total body irradiation on NOG mice. Asian Pac. J. Cancer Prev., 23(2), 383–382. DOI
- Quach, A., Glowik, S., Putty, T., Ferrante, A. (2019) Delayed blood processing leads to rapid deterioration in the measurement of the neutrophil respiratory burst by the dihydrorhodamine–123 reduction assay. Cytometry B Clin. Cytom., 96(5), 389–396. DOI
- Chang, S.C., Rodrigues, N.P., Zurgil, N., Henderson, J.R., Bedioui, F., McNeil, C.J., Deutsch, M. (2005) Simultaneous intra– and extracellular superoxide monitoring using an integrated optical and electrochemical sensor system. Biochem. Biophys. Res. Commun., 327(4), 979–984. DOI
- Ghasemzadeh, M., Hosseini, E. (2017) Platelet granule release is associated with reactive oxygen species generation during platelet storage: A direct link between platelet pro–inflammatory and oxidation states. Thromb. Res., 156(5),101–104. DOI
- Vernon, P.J., Paredes, R.M., Sooter, A.J., Schaub, L.J., Grossman, H.M., Pusateri, A.E., Glaser, J.J., Sheppard, F.R. (2016) Severe hemorrhagic shock induces acute activation and expansion of IL–8+/IL–10+ neutrophils with enhanced oxidative reactivity in non–human primates. Shock, 46(3), 129–136. DOI
- Hastuti, S.D., Quach, A., Costabile, M., Barton, M.D., Pyecroft, S.B., Ferrante A. (2019) Measuring the Asian seabass (Lates calcarifer) neutrophil respiratory burst activity by the dihydrorhodamine–123 reduction flow cytometry assay in whole blood. Fish Shellfish Immunol., 92(5), 871–880. DOI
- Djiadeu, P., Azzouz, D., Khan, M.A., Kotra, L.P., Sweezey, N., Palaniyar, N. (2017) Ultraviolet irradiation increases green fluorescence of dihydrorhodamine(DHR–) 123: false–positive results for reactive oxygen species generation. Pharmacol. Res. Perspect., 5(2), e00303. DOI
- Wardman, P. (2008) Methods to measure the reactivity of peroxynitrite–derived oxidants toward reduced fluoresceins and rhodamines. Methods Enzymol., 441, 261–282. DOI
- Vowells, S.J., Sekhsaria, S., Malech, H.L., Shalit, M., Fleisher, T.A. (1995) Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J. Immunol. Methods, 178(1), 89–97. DOI
- Tichopad, A., Dilger, M., Schwarz, G., Pfaffl, M.W. (2003) Standardized determination of real–time PCR efficiency from a single reaction set–up. Nucleic Acids Res., 31(20), e122. DOI
- Bantula, M, Arismendi, E., Picado, C., Mullol, J., Roca-Ferrer, J., Tubita,V. (2022) Reference Gene Validation for RT–qPCR in PBMCs from Asthmatic Patients with or without Obesity. Methods Protoc., 5(3), E35. DOI
- Ibragimov, B.R., Skibo, Yu.V., Reshetnikova, I.D., Abramov, S.N., Daminova, A.G., Evtyugin, V.G., Abramova Z.I. (2024) Effect of the Rubicon protein on LC3-associated phagocytosis by monocytes in the patients with severe atopicbronchial asthma. Medical Immunology (Russia), 26(6), 1213–1222. DOI
- Wong, S., Payel Sil, P., Martinez, J. (2017) Rubicon: LC3-associated phagocytosis and beyond. The FEBS journal, 285(8), 1379-1388. DOI
