Супероксидгенерирующая и антиоксидантная активность никотинамидных коферментов in vitro
##plugins.themes.bootstrap3.article.main##
Аннотация
Обнаружены новые свойства никотинамидных коферментов (NAD, NADP, NADH, NADPH): супероксидгенерирующая и антиоксидантная активности. Коферменты способны генерировать супероксид анионы (О2─●), попадая в щелочную среду; и могут быть ловушками О2─●, ингибируя процесс генерации в супероксидгенерирующих модельных системах, проявляя, таким образом, антиоксидантные свойства. Собственно, сам никотинамид, который является функциональной частью в молекуле кофермента в окислительно-восстановительных процессах, in vitro проявил только антиоксидантную активность. Антиоксидантные свойства были установлены и у аденозина, входящего в состав молекулы кофермента. Все эти свойства коферментов и их компонентов необходимо учитывать при использовании в научных исследованиях и медицине.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Koju, N., Qin, Z., Sheng, R. (2022) Reduced nicotinamide adeninedinucleotide phosphate in redox balance and diseases: a friend or foe? ActaPharmacologic Sinica, 43, 1889–1904. DOI
- Kirsch, M., Groot, H. (2001) NAD(P)H, a directly operating antioxidant?FASEB J., 15(9), 1569-1574. DOI
- Ying, W. (2006) NAD+ and NADH in cellular functions and cell death. Front.Biosci., 11, 3129– 3148. DOI
- Ray, P.D., Huang, B.W., Tsuji, Y. (2012) Reactiv oxygen species (ROS)homeostasis and redox regulation in cellular signaling. Cell Signal., 24(5),981–990. DOI
- Schieber, M., Chandel, N.S. (2014) ROS function in redox signaling andoxidative stress. Curr. Biol., 24(10), R453-462. DOI
- Andrés, C.M.C, Pérez de la Lastra, J.M., Andrés Juan, C., Plou, F.J., Pérez-Lebeña, E. (2023) Superoxide anion chemistry - its role at the core of the innateimmunity. Int. J. Mol. Sci., 24(3), 1841. DOI
- Sirota, T. (2023) Superoxide generation by nicotinamide coenzymes.Biomedical Chemistry: Research and Methods, 6(1), e00188. DOI
- Sirota, T.V. (2024) Superoxide generating activity of nicotinamidecoenzymes. Biophysics, 69, 18–24. DOI
- Guilbert, C.C., Johnson, S.L. (1971) Isolation and characterization of thefluorescent alkali product from diphosphopyridine nucleotide. Biochemistry,10(12), 2313-2316. DOI
- Metzler, D.E., Metzler, C.M. (2003) Biochemistry: the chemical reactions ofliving cells, 2nd Edition, Academic Press, New York, 1, 1973 p.
- Altman, F.P. (1976) Tetrazolium salts and formazans. Progress inHistochemistry and Cytochemistry, 9(3), 1-56. DOI
- Beauchamp, C., Fridovich, I. (1971) Superoxide dismutase: improvedassays and an assay applicable to acrylamide gels. Anal Biochem, 44(1), 276-87. DOI
- Sirota, T.V. (2012) Use of nitro blue tetrazolium in the reaction ofadrenaline autooxidation for the determination of superoxide dismutase activity.Biomeditsinskaya Khimiya, 58(1), 77-87. DOI
- Sirota, T.V. (2016) Standardization and regulation of the rate of thesuperoxide-generating adrenaline autoxidation reaction used for evaluation ofpro/antioxidant properties of various materials. Biomeditsinskaya Khimiya,62(6), 650-655. DOI
- Sirota, T.V., Sirota, N.P. (2022) On the Mechanism of Oxygen Activation inChemical and Biological Systems. Biophysics, 67(1), 1–7. DOI
- Sirota, T.V. (2020) A chain reaction of adrenaline autoxidation is a model ofquinoid oxidation of catecholamines. Biophysics, 65, 548–556. DOI
- Hayyan, M., Hashim, M.A., AlNashef, I.M. (2016) Superoxide ion:generation and chemical implications. Chem Rev., 116(5), 3029-85. DOI
- Ma, Y., Nie, H., Chen, H., Li, J., Hong, Y., Wang, B., Wang, C., Zhang, J.,Cao, W., Zhang, M., Xu, Y., Ding, X., Yin, S.K., Qu, X., Ying, W. (2015) NAD+/NADH metabolism and NAD+-dependent enzymes in cell death and ischemicbrain injury: current advances and therapeutic implications. Curr. Med. Chem.,22(10), 1239-1247. DOI
- Kamal, S., Babar, S., Ali, W., Rehman, K., Hussain, A., Akash, M.S.H. (2024)Sirtuin insights: bridging the gap between cellular processes and therapeuticapplications. Naunyn-Schmiedeberg’s Arch. Pharmacol., 397, 9315–9344. DOI
- Wang, J., Zhao, C., Kong, P., Sun, H., Sun, Z., Bian, G., Sun, Y., Guo,L. (2016) Treatment with NAD(+) inhibited experimental autoimmuneencephalomyelitis by activating AMPK/SIRT1 signaling pathway andmodulating Th1/Th17 immune responses in mice. Int. Immunopharmacol., 39,287-294. DOI
- Lu, L., Tang, L., Wei, W., Hong, Y., Chen, H., Ying, W., Chen, S. (2014)Nicotinamide mononucleotide improves energy activity and survival rate in anin vitro model of Parkinson’s disease. Exp. Ther. Med., 8(3), 943-950. DOI
- Wang, J., Song, X., Tan, G., Sun, P., Guo, L., Zhang, N., Wang, J., Li, B.(2021) NAD+ improved experimental autoimmune encephalomyelitis byregulating SIRT1 to inhibit PI3K/Akt/mTOR signaling pathway. Aging (AlbanyNY), 13(24), 25931-25943. DOI
- Pollak, N., Dölle, C., Ziegler, M. (2007) The power to reduce: pyridinenucleotides--small molecules with a multitude of functions. Biochem. J., 402(2),205-18. DOI
- Sirota, T.V. (2020) Effect of sulfur-containing compounds on the quinoidprocess of adrenaline autoxidation; Potential Neuroprotectors. BiomeditsinskayaKhimiya, 65(4), 316-323. DOI