Протоколы протеомного анализа: выделение, солюбилизация белков и гидролиз белков протеазами
##plugins.themes.bootstrap3.article.main##
Аннотация
Высокопроизводительные исследования белкового состава биологических образцов в настоящее время стали рутинными и используются практически во всех направлениях науки о жизни. Современные методы протеомики позволяют провести достоверную идентификацию и количественную оценку тысяч белков в одном эксперименте. Стандартная процедура протеомного анализа включает следующие стадии: 1. солюбилизация и выделение белков и их последующий гидролиз протеазами; 2. анализ образовавшихся пептидов методом высокоэффективной жидкостной хроматографии с масс-спектрометрическим детектированием; 3. биоинформатическая и статистическая обработка результатов. В данной работе представлены протоколы первого этапа протеомного анализа – пробоподготовки, которые рутинно используются в лаборатории системной биологии Института биомедицинской химии им. В.Н. Ореховича.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Kahn, P. (1995) From genome to proteome: looking at a cell’sproteins. Science (New York, N.Y.), 270(5235), 369–370. DOI
- Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., Mann, M. (2006) In-geldigestion for mass spectrometric characterization of proteins and proteomes.Nature Protocols, 1(6), 2856–2860. DOI
- Thanou, E., Koopmans, F., Pita-Illobre, D., Klaassen, R.V., Özer, B.,Charalampopoulos, I., Smit, A.B., Li, K.W. (2023) Suspension TRAPping Filter(sTRAP) Sample preparation for quantitative proteomics in the low μg inputrange using a plasmid DNA micro-spin column: analysis of the hippocampusfrom the 5xFAD Alzheimer’s disease mouse model. Cells, 12(9), 1242. DOI
- Wiśniewski, J.R., Zougman, A., Nagaraj, N., Mann, M. (2009) Universalsample preparation method for proteome analysis. Nature Methods, 6(5),359–362. DOI
- Ji, Y., Liu, M., Bachschmid, M. M., Costello, C. E., Lin, C. (2015). Surfactant-Induced Artifacts during Proteomic Sample Preparation. Analytical chemistry,87(11), 5500–5504. DOI
- Pirmoradian, M., Budamgunta, H., Chingin, K., Zhang, B., Astorga-Wells,J., Zubarev, R.A. (2013) Rapid and deep human proteome analysis by singledimensionshotgun proteomics. Molecular & Cellular Proteomics: MCP, 12(11),3330–3338. DOI
- Saveliev, S.V., Woodroofe, C.C., Sabat, G., Adams, C.M., Klaubert, D., Wood,K., Urh, M. (2013) Mass spectrometry compatible surfactant for optimizedin-gel protein digestion. Analytical Chemistry, 85(2), 907–914. DOI
- Danko, K., Lukasheva, E., Zhukov, V.A., Zgoda, V., Frolov, A. (2022)Detergent-assisted protein digestion-on the way to avoid the key bottleneck ofshotgun bottom-up proteomics. International Journal of Molecular Sciences,23(22), 13903. DOI
- Tsiatsiani, L., Heck, A.J. (2015) Proteomics beyond trypsin. The FEBSJournal, 282(14), 2612–2626. DOI
- Kazieva, L. S., Farafonova, T. E., Zgoda, V. G. (2023) Proteomika antitel[Antibody proteomics]. Biomeditsinskaya Khimiya, 69(1), 5–18. DOI
- PEPTIDEMASS - a World-Wide Web accessible tool for peptidecharacterization. Retrieved May 7, 2025, from: https://web.expasy.org/peptide_mass
- Fragment Ion Calculator. Retrieved May 7, 2025, from:http://db.systemsbiology.net:8080/proteomicsToolkit/FragIonServlet.html
- Karneyeva, K., Kolesnik, M., Livenskyi, A., Zgoda, V., Zubarev,V., Trofimova, A., Artamonova, D., Ispolatov, Y., Severinov, K. (2024)Interference requirements of type III CRISPR-Cas systems from thermusthermophilus. Journal of Molecular Biology, 436(6), 168448. DOI
- Demina, I.A., Serebryakova, M. V., Ladygina, V.G., Rogova, M.A., Zgoda,V.G., Korzhenevskyi, D.A., Govorun, V.M. (2009) Proteome of the bacteriummycoplasma gallisepticum. Biochemistry. Biokhimiia, 74(2), 165–174. DOI
- Vavilov, N.E., Zgoda, V.G., Tikhonova, O.V., Farafonova, T.E., Shushkova,N.A., Novikova, S.E., Yarygin, K.N., Radko, S.P., Ilgisonis, E.V., Ponomarenko,E.A., Lisitsa, A.V., Archakov, A.I. (2020) Proteomic analysis of Chr 18 proteinsusing 2D fractionation. Journal of Proteome Research, 19(12), 4901–4906. DOI
- Novikova, S., Tikhonova, O., Kurbatov, L., Farafonova, T., Vakhrushev,I., Lupatov, A., Yarygin, K., Zgoda, V. (2021) Omics technologies to decipherregulatory networks in granulocytic cell differentiation. Biomolecules, 11(6),907. DOI
- Shkrigunov, T., Kisrieva, Y., Samenkova, N., Larina, O., Zgoda, V., Rusanov,A., Romashin, D., Luzgina, N., Karuzina, I., Lisitsa, A., Petushkova, N. (2022)Comparative proteoinformatics revealed the essentials of SDS impact onHaCaT keratinocytes. Scientific Reports, 12(1), 21437. DOI
- Buneeva, O.A., Kapitsa, I.G., Kazieva, L.S., Vavilov, N.E., Zgoda, V.G.(2023) Quantitative changes of brain isatin-binding proteins of rats with therotenone-induced experimental parkinsonism. Biomeditsinskaya Khimiya,69(3), 188–192. DOI
- Medvedev, A., Kopylov, A., Buneeva, O., Kurbatov, L., Tikhonova, O.,Ivanov, A., Zgoda, V. (2020) A Neuroprotective dose of isatin causes multilevelchanges involving the brain proteome: prospects for further research.International Journal of Molecular Sciences, 21(11), 4187. DOI
- Anselm, V., Novikova, S., Zgoda, V. (2017) Re-adaption on earth afterspaceflights affects the mouse liver proteome. International Journal ofMolecular Sciences, 18(8), 1763. DOI
- Vavilov, N.E., Ilgisonis, E.V., Lisitsa, A.V., Ponomarenko, E.A., Farafonova,T.E., Tikhonova, O.V., Zgoda, V.G., Archakov, A.I. (2022) Deep proteomicdataset of human liver samples obtained by two-dimensional samplefractionation coupled with tandem mass spectrometry. Data in Brief, 42,108055. DOI
- Kurochkina, N.S., Orlova, M.A., Vigovskiy, M.A., Zgoda, V.G., Vepkhvadze,T.F., Vavilov, N.E., Makhnovskii, P.A., Grigorieva, O.A., Boroday, Y.R.,Philippov, V.V., Lednev, E.M., Efimenko, A. Y., Popov, D. V. (2024) Age-relatedchanges in human skeletal muscle transcriptome and proteome are moreaffected by chronic inflammation and physical inactivity than primary aging.Aging Cell, 23(4), e14098. DOI
- Davydov, D.R., Dangi, B., Yue, G., Ahire, D. S., Prasad, B., Zgoda, V.G.(2022) Exploring the interactome of cytochrome P450 2E1 in human livermicrosomes with chemical crosslinking mass spectrometry. Biomolecules,12(2), 185. DOI
- Novikova, S., Tolstova, T., Kurbatov, L., Farafonova, T., Tikhonova, O.,Soloveva, N., Rusanov, A., Archakov, A., Zgoda, V. (2022) Nuclear proteomicsof induced leukemia cell differentiation. Cells, 11(20), 3221. DOI
- Zgoda, V.G., Moshkovskii, S.A., Ponomarenko, E.A., Andreewski, T.V.,Kopylov, A.T., Tikhonova, O.V., Melnik, S.A., Lisitsa, A.V., Archakov, A.I. (2009)Proteomics of mouse liver microsomes: performance of different proteinseparation workflows for LC-MS/MS. Proteomics, 9(16), 4102–4105. DOI
- Kopylov, A.T., Ponomarenko, E.A., Ilgisonis, E.V., Pyatnitskiy, M.A., ,A.V., Poverennaya, E.V., Kiseleva, O.I., Farafonova, T.E., Tikhonova, O.V.,Zavialova, M.G., Novikova, S.E., Moshkovskii, S.A., Radko, S.P., Morukov, B.V.,Grigoriev, A.I., Paik, Y.K., Salekdeh, G.H., Urbani, A., Zgoda, V.G., Archakov,A.I. (2019) 200+ Protein concentrations in healthy human blood plasma:targeted quantitative SRM SIS screening of chromosomes 18, 13, Y, and themitochondrial chromosome encoded proteome. Journal of Proteome Research,18(1), 120–129. DOI
- Zgoda, V.G., Kopylov, A.T., Tikhonova, O.V., Moisa, A.A., Pyndyk,N.V., Farafonova, T.E., Novikova, S.E., Lisitsa, A.V., Ponomarenko, E.A.,Poverennaya, E.V., Radko, S.P., Khmeleva, S.A., Kurbatov, L.K., Filimonov,A.D., Bogolyubova, N.A., Ilgisonis, E.V., Chernobrovkin, A.L., Ivanov, A.S.,Medvedev, A.E., Mezentsev, Y.V., Archakov, A.I. (2013) Chromosome 18transcriptome profiling and targeted proteome mapping in depleted plasma, livertissue and HepG2 cells. Journal of Proteome Research, 12(1), 123–134. DOI
- Smirnova, L., Seregin, A., Boksha, I., Dmitrieva, E., Simutkin, G.,Kornetova, E., Savushkina, O., Letova, A., Bokhan, N., Ivanova, S., Zgoda, V.(2019) The difference in serum proteomes in schizophrenia and bipolar disorder.BMC Genomics, 20(Suppl 7), 535. DOI
- Pastushkova, L.H., Rusanov, V.B., Goncharova, A.G., Brzhozovskiy, A.G.,Kononikhin, A.S., Chernikova, A.G., Kashirina, D.N., Nosovsky, A.M., Baevsky,R.M., Nikolaev, E.N., Larina, I.M. (2019) Urine proteome changes associatedwith autonomic regulation of heart rate in cosmonauts. BMC Systems Biology,13(Suppl 1), 17. DOI
- Novikova, S., Soloveva, N., Farafonova, T., Tikhonova, O., Shimansky,V., Kugushev, I., Zgoda, V. (2023) Proteomic shotgun and targeted massspectrometric datasets of cerebrospinal fluid (liquor) derived from patients withvestibular schwannoma. Data, 8(4), 71. DOI
- Zavialova, M.G., Shevchenko, V.E., Nikolaev, E.N., Zgoda, V.G. (2017)Is myelin basic protein a potential biomarker of brain cancer? EuropeanJournal of Mass Spectrometry (Chichester, England), 23(4), 192–196. DOI
- Baskova, I.P., Zavalova, L.L., Basanova, A.V., Moshkovskii, S.A., Zgoda,V.G. (2004) Protein profiling of the medicinal leech salivary gland secretion byproteomic analytical methods. Biochemistry. Biokhimiia, 69(7), 770–775. DOI
- Kliuchnikova, A.A., Samokhina, N. ., Ilina, I.Y., Karpov, D.S., Pyatnitskiy,M.A., Kuznetsova, K.G., Toropygin, I.Y., Kochergin, S.A., Alekseev, I.B., Zgoda,V.G., Archakov, A.I., Moshkovskii, S.A. (2016) Human aqueous humor proteomein cataract, glaucoma, and pseudoexfoliation syndrome. Proteomics, 16(13),1938–1946. DOI
- Odorskaya, M.V., Mavletova, D.A., Nesterov, A.A., Tikhonova, O.V.,Soloveva, N.A., Reznikova, D.A., Galanova, O.O., Vatlin, A.A., Slynko,N.M., Vasilieva, A.R., Peltek, S.E., Danilenko, V.N. (2024) The use of omicstechnologies in creating LBP and postbiotics based on the limosilactobacillusfermentum U-21. Frontiers in Microbiology, 15, 1416688. DOI
- Pakharukova, M.Y., Savina, E., Ponomarev, D.V., Gubanova, N.V., Zaparina,O., Zakirova, E.G., Cheng, G., Tikhonova, O.V., Mordvinov, V.A. (2023)Proteomic characterization of opisthorchis felineus exosome-like vesicles andtheir uptake by human cholangiocytes. Journal of Proteomics, 283-284, 104927. DOI
- Gerringer, M.E., Yancey, P.H., Tikhonova, O.V., Vavilov, N.E., Zgoda, V.G.,Davydov, D.R. (2020) Pressure tolerance of deep-sea enzymes can be evolvedthrough increasing volume changes in protein transitions: a study with lactatedehydrogenases from abyssal and hadal fishes. The FEBS Journal, 287(24),5394–5410. DOI
- Fedulova, L., Vasilevskaya, E., Tikhonova, O., Kazieva, L., Tolmacheva,G., Makarenko, A. (2022) Proteomic markers in the muscles and brain ofpigs recovered from hemorrhagic stroke. Genes, 13(12), 2204. DOI
- Filatov, A.V., Krotov, G.I., Zgoda, V.G., Volkov, Y. (2007) Fluorescentimmunoprecipitation analysis of cell surface proteins: a methodologycompatible with mass-spectrometry. Journal of Immunological Methods, 319(1-2), 21–33. DOI
- Kopylov, A.T., Zgoda, V.G., Lisitsa, A.V., Archakov, A.I. (2013) Combineduse of irreversible binding and MRM technology for low- and ultralow copynumberprotein detection and quantitation. Proteomics, 13(5), 727–742. DOI
- Laptev, I., Shvetsova, E., Levitskii, S., Serebryakova, M., Rubtsova, M.,Zgoda, V., Bogdanov, A., Kamenski, P., Sergiev, P., Dontsova, O. (2020)METTL15 interacts with the assembly intermediate of murine mitochondrialsmall ribosomal subunit to form m4C840 12S rRNA residue. Nucleic AcidsResearch, 48(14), 8022–8034. DOI
- Ludwig, K. R., Schroll, M. M., Hummon, A. B. (2018). Comparison of In-Solution, FASP, and S-Trap Based Digestion Methods for Bottom-Up ProteomicStudies. Journal of proteome research, 17(7), 2480–2490. DOI
- Wiśniewski, J. R., Ostasiewicz, P., Mann, M. (2011). High recovery FASPapplied to the proteomic analysis of microdissected formalin fixed paraffinembedded cancer tissues retrieves known colon cancer markers. Journal ofproteome research, 10(7), 3040–3049. DOI
- Wiśniewski, J.R., Zielinska, D.F., Mann, M. (2011) Comparison ofultrafiltration units for proteomic and N-glycoproteomic analysis by the filteraidedsample preparation method. Analytical Biochemistry, 410(2), 307–309. DOI