Метаболическое профилирование интерстициальной жидкости гиппокампа мышей линии 5xFAD после когнитивной нагрузки: пилотное исследование
##plugins.themes.bootstrap3.article.main##
Аннотация
Болезнь Альцгеймера (БА) всё чаще рассматривают как нейродегенеративное заболевание, связанное с нарушением энергетического метаболизма мозга, что способствует развитию синаптических и когнитивных дисфункций. Хотя особенности метаболических нарушений при БА хорошо охарактеризованы в состоянии покоя, значительно меньше известно о реакции гиппокампа на когнитивную стимуляцию, требующую высокой метаболической гибкости. В настоящем пилотном исследовании с использованием методов in vivo микродиализа и высокоразрешающей ЯМР-спектроскопии проведён анализ метаболического профиля интерстициальной жидкости гиппокампа у трансгенных мышей линии 5xFAD и животных дикого типа (C57BL/6) на 7 и 28 сутки после когнитивного обучения в парадигме условно-пассивного избегания. Среди исследованных метаболитов статистически достоверные различия между группами выявлены только для ацетона: у животных линии 5xFAD на 28 сутки его концентрация была значительно ниже по сравнению с контролем, что может отражать ограниченную способность к поддержанию кетонового метаболизма в отсроченный постнагрузочный период. Другие метаболиты (ацетат, лактат, капрат, изобутират и глицин) не продемонстрировали значимых межгрупповых различий, однако наблюдавшиеся изменения могут указывать на сдвиги в использовании альтернативных энергетических субстратов. Полученные данные свидетельствуют о снижении метаболической пластичности гиппокампа у трансгенных животных, особенно в поздней фазе после когнитивной стимуляции, что потенциально может ограничивать долговременную когнитивную адаптацию. Несмотря на ограничения пилотного исследования, результаты подчёркивают информативность подхода, сочетающего метаболическое профилирование in vivo, для раннего выявления метаболических нарушений и поиска потенциальных биомаркеров нейродегенеративных процессов при БА.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Conde, R., Oliveira, N., Morais, E., Amaral, A.P., Sousa, A., Graça, G., Verde, I. (2024) NMR analysis seeking for cognitive decline and dementia metabolic markers in plasma from aged individuals. Journal of Pharmaceutical and Biomedical Analysis, 238, 115815. DOI
- Ezkurdia, A., Ramírez, M.J., Solas, M. (2023) Metabolic syndrome as a risk factor for Alzheimer’s disease: a focus on insulin resistance. International Journal of Molecular Sciences, 24(5), 4354. DOI
- Silva, M.V.F., Loures, C.D.M.G., Alve,s L.C.V., De Souza, L.C., Borge,s K.B.G., Carvalho, M.D.G. (2019) Alzheimer’s disease: risk factors and potentially protective measures. Journal of Biomedical Science, 26(1), 33. DOI
- Dia,s D., Socodato, R. (2025) Beyond amyloid and tau: the critical role of microglia in Alzheimer’s disease therapeutics. Biomedicines, 13(2), 279. DOI
- Wang, W., Zhao, F., Ma, X., Perry, G., Zhu, X. (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Molecular Neurodegeneration, 15(1), 30. DOI
- Aran, K.R., Singh, S. (2023) Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease–A step towards mitochondria based therapeutic strategies. Aging and Health Research, 3(4), 100169. DOI
- González-Domínguez, R., García-Barrera, T., Gómez-Ariza, J.L. (2014) Metabolomic study of lipids in serum for biomarker discovery in Alzheimer’s disease using direct infusion mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 98, 321–326. DOI
- Maszka, P., Kwasniak-Butowska, M., Cysewski, D., Slawek, J., Smolenski, R.T., Tomczyk, M. (2023) Metabolomic footprint of disrupted energetics and amino acid metabolism in neurodegenerative diseases: perspectives for early diagnosis and monitoring of therapy. Metabolites, 13(3), 369. DOI
- Xu, L., Liu, R., Qin, Y., Wang, T. (2023) Brain metabolism in Alzheimer’s disease: biological mechanisms of exercise. Translational Neurodegeneration, 12(1), 33. DOI
- Yan, X., Hu, Y., Wang, B., Wang, S., Zhang, X. (2020) Metabolic dysregulation contributes to the progression of Alzheimer’s disease. Frontiers in Neuroscience, 14, 530219. DOI
- Suresh, V.V., Sivaprakasam, S., Bhutia, Y.D., Prasad, P.D., Thangaraju, M., Ganapathy, V. (2025) Not just an alternative energy source: diverse biological functions of ketone bodies and relevance of HMGCS2 to health and disease. Biomolecules, 15(4), 580. DOI
- Jensen, N.J., Wodschow, H.Z., Nilsson, M., Rungby, J. (2020) Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. International Journal of Molecular Sciences, 21(22), 8767. DOI
- Komleva, Y., Chernykh, A., Lopatina, O., Gorina, Y., Lokteva, I., Salmina, A., Gollasch, M. (2021) Inflamm-aging and brain insulin resistance: new insights and role of life-style strategies on cognitive and social determinants in aging and neurodegeneration. Frontiers in Neuroscience, 14, 618395. DOI
- Ramezani, M., Fernando, M., Eslic,k S., Asih, P.R., Shadfar, S., Bandara, E.M.S., Hillebrandt, H., Meghwar, S., Shahriari, M., Chatterjee, P., Thota, R., Dias, C.B., Garg, M.L., Martins, R.N. (2023) Ketone bodies mediate alterations in brain energy metabolism and biomarkers of Alzheimer’s disease. Frontiers in Neuroscience, 17, 1297984. DOI
- Aquilani, R., Cotta Ramusino, M., Maestri, R., Iadarola, P., Boselli, M., Perini, G., Boschi, F., Dossena, M., Bellini, A., Buonocore, D., Doria, E., Costa, A., Verri, M. (2023) Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Frontiers in Aging Neuroscience, 15, 1237469. DOI
- Parnetti, L., Reboldi, G., Gallai, V. (2000) Cerebrospinal fluid pyruvate levels in Alzheimer’s disease and vascular dementia. Neurology, 54(3), 735– 735. DOI
- Hileman, C.O., Kalayjian, R.C., Azzam, S., Schlatzer, D., Wu, K., Tassiopoulos, K., Bedimo, R., Ellis, R.J., Erlandson, K.M., Kallianpur, A., Koletar, S.L., Landay, A.L., Palella, F.J., Taiwo, B., Pallaki, M., Hoppel, C.L. (2021) Plasma citrate and succinate are associated with neurocognitive impairment in older people with HIV. Clinical Infectious Diseases, 73(3), e765– e772. DOI
- Andersen, J.V., Skotte, N.H., Christensen, S.K., Polli, F.S., Shabani, M., Markussen, K.H., Haukedal, H., Westi, E.W., Diaz-delCastillo, M., Sun, R.C., Kohlmeier, K.A., Schousboe, A., Gentry, M.S., Tanila, H., Freude, K.K., Aldana, B.I., Mann, M., Waagepetersen, H.S. (2021) Hippocampal disruptions of synaptic and astrocyte metabolism are primary events of early amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease. Cell Death & Disease, 12(11), 954. DOI
- Madrer, N., Perera, N.D., Uccelli, N.A., Abbondanza, A., Andersen, J.V., Carsana, E.V., Demmings, M.D., Fernandez, R.F., De Fragas, M.G., Gbadamosi, I., Kulshrestha, D., Lima-Filho, R.A.S., Marian, O.C., Markussen, K.H., McGovern, A.J., Neal, E.S., Sarkar, S., … Fernández-Moncada, I. (2025) Neural Metabolic Networks: Key Elements of Healthy Brain Function. Journal of Neurochemistry, 169(6), e70084. DOI
- Steinman, M.Q., Gao, V., Alberini, C.M. (2016) The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Frontiers in Integrative Neuroscience, 10. DOI
- Averchuk, A.S., Kukla, M.V., Rozanova, N.A., Stavrovskaya, A.V., Salmina, A.B. (2025) Comparative analysis of neurogenesis and cerebral angiogenesis in the hippocampal neurogenic niche in animals with two experimental models of Alzheimer’s disease. Annals of Clinical and Experimental Neurology, 19(2), 41–51. DOI
- Mohammadi, M., Tavassoli, Z., Anvari, S., Javan, M., Fathollahi, Y. (2024) Avoidance and escape conditioning adjust adult neurogenesis to conserve a fit hippocampus in adult male rodents. Journal of Neuroscience Research, 102(1), e25291. DOI
- Anderson, J.C., Mattar, S.G., Greenway, F.L., Lindquist, R.J. (2021) Measuring ketone bodies for the monitoring of pathologic and therapeutic ketosis. Obesity Science & Practice, 7(5), 646–656. DOI
- Fan, L., Zhu, X., Borenstein, A.R., Huang, X., Shrubsole, M.J., Dugan, L.L., Dai, Q. (2023) Association of circulating caprylic acid with risk of mild cognitive impairment and Alzheimer’s Disease in the Alzheimer’s disease neuroimaging initiative (ADNI) Cohort. The Journal of Prevention of Alzheimer’s Disease, 10(3), 513–522. DOI
- Andersen, J.V., Schousboe, A. (2023) Glial glutamine homeostasis in health and disease. Neurochemical Research, 48(4), 1100–1128. DOI
- González-Bosch, C., Boorman, E., Zunszain, P.A., Mann, G.E. (2021) Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biology, 47, 102165. DOI
- Shcherbakova, K., Schwarz, A., Apryatin, S., Karpenko, M., Trofimov, A. (2022) Supplementation of regular diet with medium-chain triglycerides for procognitive effects: a narrative review. Frontiers in Nutrition, 9, 934497. DOI
- Yin, F. (2023) Lipid metabolism and Alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise. The FEBS Journal, 290(6), 1420– 1453. DOI
- Jang, S., Xuan, Z., Lagoy, R.C., Jawerth, L.M., Gonzalez, I.J., Singh, M., Prashad, S., Kim, H.S., Patel, A., Albrecht, D.R., Hyman, A.A., Colón-Ramos, D.A. (2021) Phosphofructokinase relocalizes into subcellular compartments with liquid-like properties in vivo. Biophysical Journal, 120(7), 1170–1186. DOI
- Li, J., Zhang, N., Ren, W., Li, L., Sun, Y., Hou, Y., Song, S., Pan, L., Sun, Y., Zhang, K., Li, D., Guo, R., Lv, C., Han, F., Yu, Y. (2025) Effect of chronic intermittent hypoxia on hippocampal lipid metabolism in mice: A targeted lipidomics study. Brain Research Bulletin, 224, 111319. DOI
- Liu, L., MacKenzie, K.R., Putluri, N., Maletić-Savatić, M., Bellen, H.J. (2017) The glia-neuron lactate shuttle and elevated ROS Promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D. Cell Metabolism, 26(5), 719-737.e6. DOI
- De Bartolomeis, A., Manchia, M., Marmo, F., Vellucci, L., Iasevoli, F., Barone, A. (2020) Glycine signaling in the framework of dopamine-glutamate interaction and postsynaptic density. implications for treatment-resistant schizophrenia. Frontiers in Psychiatry, 11, 369. DOI
- Seillier, C., Lesept, F., Toutirais, O., Potzeha, F., Blanc, M., Vivien, D. (2022) Targeting NMDA receptors at the neurovascular unit: past and future treatments for central nervous system diseases. International Journal of Molecular Sciences, 23(18), 10336. DOI
