De novo секвенирование белков и пептидов: алгоритмы, приложения, перспективы
##plugins.themes.bootstrap3.article.main##
Аннотация
Установление первичной структуры белков и пептидов является важным этапом при изучении их свойств. В настоящее время для решения данной задачи наиболее часто используется масс-спектрометрия. Результаты масс-спектрометрических измерений могут быть интерпретированы посредством поиска в базе данных или методами de novo секвенирования. Привлекательность последних обусловлена возможностью их применения для исследования неизвестных белков, а также тех, которые не могут быть проанализированы методами геномики или транскриптомики. В данной статье предлагается краткий обзор существующих подходов к de novo секвенированию белков и пептидов и решаемых с их помощью задач, а в завершение обозначены направления и перспективы их дальнейшего развития.
##plugins.themes.bootstrap3.article.details##
Как цитировать
Вяткина K. (2018). De novo секвенирование белков и пептидов: алгоритмы, приложения, перспективы. Biomedical Chemistry: Research and Methods, 1(1), e00005. https://doi.org/10.18097/BMCRM00005
Выпуск
Раздел
ОБЗОРЫ
Библиографические ссылки
- Edman P. (1949) A method for the determination of amino acid sequence in peptides. Arch. Biochem., 22(3):475-476.
- Edman P. (1950) Method for determination of the amino acid sequence in peptides. Acta Chem. Scand., 4:283-293.
- Eng J. K., McCormack A. L., Yates J. R. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database . J. Am. Soc. Mass Spectrom., 5(11):976-989. DOI
- Perkins D. N., Pappin D. J. C., Creasy D. M., Cottrell J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18):3551-3567. DOI
- Kim S., Gupta N., Pevzner P. A. (2008) Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. J. Proteome Res., 7 (8):3354-3363. DOI
- Kim S., Pevzner P. A. (2014) MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun., 5: 5277. DOI
- Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011) Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res., 10 (4):1794-1805. DOI
- LeDuc R. D., Taylor G. K., Kim Y. B., Januszyk T. E., Bynum L. H., Sola J. V., Garavelli J. S., Kelleher N. L. (2004) ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry. Nucleic Acids Res., 32(Web Server issue):W340-W345. DOI
- Zamdborg L., LeDuc R. D., Glowacz K. J., Kim Y. B., Viswanathan V., Spaulding I. T., Early B. P., Bluhm E. J., Babai S., Kelleher N. L. (2007) ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic Acids Res., 35(Web Server issue):W701-W706. DOI
- Liu X., Sirotkin Y., Shen Y., Anderson G., Tsai Y. S., Ting Y. S., Goodlett D. R., Smith R. D., Bafna V., Pevzner P. A. (2012) Protein identification using top-down spectra. Mol. Cell Proteomics, 11(6):M111.008524. DOI
- Kou Q., Xun L., Liu X. (2016) TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics, 2(22):3495-3497. DOI
- Mann M., Wilm M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal. Chem., 66 (24):4390–4399. DOI
- Taylor J. A., Johnson R. S. (2011) Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal. Chem., 73(11):2594-2604. DOI
- Tabb D. L., Saraf A., Yates J. R. (2003) GutenTag: high-throughput sequence tagging via an empirically derived fragmentation model. Anal. Chem., 75(23):6415–6421. DOI
- Sunyaev S., Liska A. J., Golod A., Shevchenko A., Shevchenko A. (2003) MultiTag: multiple error-tolerant sequence tag search for the sequence-similarity identification of proteins by mass spectrometry. Anal. Chem., 75(6):1307-1315. DOI
- Searle B. C., Dasari S., Turner M., Reddy A. P., Choi D., Wilmarth P. A., McCormack A. L., David L. L., Nagalla S. R. (2004) High-throughput identification of proteins and unanticipated sequence modifications using a mass-based alignment algorithm for MS/MS de novo sequencing results Anal. Chem., 76(8):2220–2230. DOI
- Savitski M. M., Nielsen M. L., Zubarev R. A. (2005) New data base-independent, sequence tag-based scoring of peptide MS/MS data validates Mowse scores, recovers below threshold data, singles out modified peptides, and assesses the quality of MS/MS techniques. Mol Cell. Proteomics, 4(8):1180-1188. DOI
- Frank A., Tanner S., Bafna V., Pevzner P. (2005) Peptide sequence tags for fast database search in mass-spectrometry. J. Proteome Res., 4(4):1287–1295. DOI
- Cao X., Nesvizhskii A. I. (2008) Improved sequence tag generation method for peptide identification in tandem mass spectrometry. J. Proteome Res., 7(10):4422–4434. DOI
- Na S., Jeong J., Park H., Lee K. J., Paek E. (2008) Unrestrictive identification of multiple post-translational modifications from tandem mass spectrometry using an error-tolerant algorithm based on an extended sequence tag approach. Mol. Cell Proteomics., 7(12):2452-2463. DOI
- Shen Y., Tolic N., Hixson K. K., Purvine S. O., Anderson G. A., Smith R. D. (2008) De novo sequencing of unique sequence tags for discovery of post-translational modifications of proteins. Anal. Chem., 8 (20):7742–7754. DOI
- Tabb D. L., Ma Z.-Q., Martin D. B., Ham A.-J. L., Chambers M. C. (2008) DirecTag: Accurate sequence tags from peptide MS/MS through statistical scoring. J. Proteome Res., 7(9):3838–3846. DOI
- Pan C., Park B. H., McDonald W. H., Carey P. A., Banfield J. F., VerBerkmoes N. C., Hettich R. L., Samatova N. F. (2010) A high-throughput de novo sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry. BMC Bioinformatics, 11:118. DOI
- Liu W. T., Kersten R. D., Yang Y. L., Moore B. S., Dorrestein P. C. (2011) Imaging mass spectrometry and genome mining via short sequence tagging identified the anti-infective agent arylomycin in Streptomyces roseosporus. J. Am. Chem, Soc., 133(45):18010-18013. DOI
- Kersten R. D., Yang Y. L., Xu Y., Cimermancic P., Nam S. J., Fenical W., Fischbach M. A., Moore B. S., Dorrestein P. C. (2011) Natural product peptidogenomics: A mass spectrometry-guided genome mining approach. Nat. Chem. Biol. 7(11):794-802. DOI
- Taylor J. A., Johnson R. S. (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom.,11(9):1067-75. DOI
- Bartels C. (1990) Fast algorithm for peptide sequencing by mass spectroscopy. Biol. Mass Spectrom., 19:363–368. DOI
- Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby A., Lajoie G. (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17(20):2337-2342. DOI
- Frank A., Pevzner P. (2005) PepNovo: De novo peptide sequencing via probabilistic network modeling. Anal. Chem. 77(4):964-73. DOI
- Vyatkina K., Wu S., Dekker L. J. M., VanDuijn M. M., Liu X., Tolic N., Dvorkin M., Alexandrova S., Luider T. M., Pasa-Tolic L., Pevzner P. A. (2015) De novo sequencing of peptides from top-down tandem mass spectra. J. Proteome Res. 14(11):4450-62. DOI
- Vyatkina K., Wu S., Dekker L. J. M., VanDuijn M. M., Liu X., Tolic N., Luider T. M., Pasa-Tolic L., Pevzner P. A. (2016) Top-down analysis of protein samples by de novo sequencing techniques. Bioinformatics, 32(18):2753-2759. DOI
- Vyatkina K. (2017) De novo sequencing of top-down tandem mass spectra: A next step towards retrieving a complete protein sequence. Proteomes, 5(1): 6. DOI
- Vyatkina K., Dekker L. J. M., Wu S., VanDuijn M. M., Liu X., Tolic N., Luider T. M., Pasa-Tolic L. (2017) De novo sequencing of peptides from high-resolution bottom-up tandem mass spectra using top-down intended methods. Proteomics, 17(23-24). DOI
- Ma B. (2015) Novor: Real-time peptide de novo sequencing software. J. Am. Soc. Mass Spectrom. 26(11):1885-1894. DOI
- Elias J. E., Gygi S. P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods, 4(3):207-214. DOI
- Artemenko K.A., Samgina T.YU., Lebedev A.T. (2006) Mass-spektrometricheskoe de novo sekvenirovanie peptidov. Mass-spektrometriya, 3(4):225-254.
- Lebedev A.T., Artemenko K.A., Samgina T.YU. (2012) Osnovy mass-spektrometrii belkov i peptidov, M.: Tekhnosfera, 176 s.
- Lebedev A.T, Artemenko K.A., Samgina T. (2015) Mass-spektrometriya v organicheskoj himii (2-e izd.), M.: Tekhnosfera, 704 s.
- Taylor J. A., Johnson R. S. (2001) Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal. Chem., 73(11):2594-2604. DOI
- Dancik V., Addona T. A., Clauser K. R., Vath J. E., Pevzner P. A. (1999) De novo peptide sequencing via tandem mass spectrometry. J. Comput. Biol. 6(3-4):327-42. DOI
- Frank A. M., Savitski M. M., Nielsen M. L., Zubarev R. A., Pevzner P. A. (2007) De novo peptide sequencing and identification with precision mass spectrometry. J. Proteome Res., 6(1):114-123. DOI
- Frank A. M. (2009) A ranking-based scoring function for peptide-spectrum matches. J. Proteome Res., 8(5):2241-2252. DOI
- Frank A. M. (2009) Predicting intensity ranks of peptide fragment ions. J. Proteome Res., 8(5): 2226-2240. DOI
- Fischer B., Roth V., Roos F., Grossmann J., Baginsky S., Widmayer P., Gruissem W., Buhmann J. M. (2005) NovoHMM: a hidden Markov model for de novo peptide sequencing. Anal Chem., 77(22):7265-7273. DOI
- Chi H., Sun R. X., Yang B., Song C. Q., Wang L. H., Liu C., Fu Y., Yuan Z. F., Wang H. P., He S. M., Dong M. Q. (2010) pNovo: De novo peptide sequencing and identification using HCD spectra. J. Proteome Res., 9(5):2713-2724. DOI
- Jeong K., Kim S., Pevzner P. A. (2013) UniNovo: a universal tool for de novo peptide sequencing. UniNovo: a universal tool for de novo peptide sequencing. Bioinformatics, 29(16):1953-1962.DOI
- Olsen J. V., Macek B., Lange O., Makarov A., Horning S., Mann M. (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods, 4(9):709-712. DOI
- Syka J. E., Coon J. J., Schroeder M. J., Shabanowitz J., Hunt D. F. (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl. Acad. Sci. USA, 101(26):9528-33. DOI
- Zubarev R. A., Kelleher N. L., McLafferty, F. W. (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc., 120(13):3265–3266. DOI
- Frese C. K., Altelaar A. F., van den Toorn H., Nolting D., Griep-Raming J., Heck A. J., Mohammed S. (2012) Toward full peptide sequence coverage by dual fragmentation combining electron-transfer and higher-energy collision dissociation tandem mass spectrometry. Anal. Chem., 84(22):9668-9673. DOI
- Madsen J. A., Boutz D. R., Brodbelt J. S. (2010) Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows. J. Proteome Res., 9(8):4205-4214. DOI
- Robotham S. A., Horton A. P., Cannon J. R., Cotham V. C., Marcotte E. M., Brodbelt J. S. (2016) UVnovo: A de novo sequencing algorithm using single series of fragment ions via chromophore tagging and 351 nm ultraviolet photodissociation mass spectrometry. Anal. Chem., 88(7):3990–3997. DOI
- Chi H., Chen H., He K., Wu L., Yang B., Sun R. X., Liu J., Zeng W. F., Song C. Q., He S. M., Dong M. Q. (2013) pNovo+: De novo peptide sequencing using complementary HCD and ETD tandem mass spectra. J. Proteome Res., 12(2):615-625. DOI
- He L., Ma B. (2010) ADEPTS: advanced peptide de novo sequencing with a pair of tandem mass spectra. J. Bioinform. Comput. Biol., 8(6):981-994. DOI
- Savitski M. M., Nielsen M. L., Zubarev R. A. (2005) New data base-independent, sequence tag-based scoring of peptide MS/MS data validates Mowse scores, recovers below threshold data, singles out modified peptides, and assesses the quality of MS/MS techniques. Mol. Cell Proteomics, 4(8):1180-1188. DOI
- Savitski M. M., Nielsen M. L., Kjeldsen F., Zubarev R. A. (2005) Proteomics-grade de novo sequencing approach. J. Proteome Res., 4(6):2348-2354. DOI
- Bertsch A., Leinenbach A., Pervukhin A., Lubeck M., Hartmer R., Baessmann C., Elnakady Y. A., Muller R., Bocker S., Huber C. G., Kohlbacher O. (2009) De novo peptide sequencing by tandem MS using complementary CID and electron transfer dissociation. Electrophoresis, 30(21):3736-47. DOI
- Datta R., Bern M. (2009) Spectrum fusion: using multiple mass spectra for de novo peptide sequencing. J. Comput. Biol., 16(8):1169-1182. DOI
- Guthals A., Clauser K. R., Frank A. M., Bandeira N. (2013) Sequencing-grade de novo analysis of MS/MS Triplets (CID/HCD/ETD) from overlapping peptides. J. Proteome Res., 12(6):2846-2857. DOI
- Horton A. P., Robotham S. A., Cannon J. R., Holden D. D., Marcotte E. M., Brodbelt J. S. (2017) Comprehensive de novo peptide sequencing from MS/MS pairs generated through complementary collision induced dissociation and 351 nm ultraviolet photodissociation. Anal. Chem., 89 (6):3747-3753. DOI
- Bandeira N., Tang H., Bafna V., Pevzner P. (2004) Shotgun protein sequencing by tandem mass spectra assembly. Anal Chem., 76(24):7221-7233. DOI
- Bandeira N., Clauser K. R., Pevzner P. A. (2007) Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins. Mol. Cell Proteomics, 6(7):1123-1134. DOI
- Bandeira N., Pham V., Pevzner P., Arnott D., Lill J. R. (2008) Automated de novo protein sequencing of monoclonal antibodies. Nat. Biotechnol., 26(12):1336-1338. DOI
- Castellana N. E., Pham V., Arnott D., Lill J. R., Bafna V. (2010) Template proteogenomics: sequencing whole proteins using an imperfect database. Mol. Cell Proteomics, 9(6):1260-1270. DOI
- Liu X., Han Y., Yuen D., Ma B. (2009) Automated protein (re)sequencing with MS/MS and a homologous database yields almost full coverage and accuracy. Bioinformatics, 25(17):2174-80. DOI
- Blank-Landeshammer B., Kollipara L., Bi? K., Pfenninger M., Malchow S., Shuvaev K., Zahedi R. P., Sickmann A. (2017) Combining de novo peptide sequencing algorithms, a synergistic approach to boost both identifications and confidence in bottom-up proteomics. J. Proteome Res., 16(9):3209-3218. DOI
- Yang H., Chi H., Zhou W.-J., Zeng W.-F., He K., Liu C., Sun R.-X., He S.-M. (2017) Open-pNovo: De novo peptide sequencing with thousands of protein modifications. J. Proteome Res., 16(2):645-654. DOI
- Creasy, D. M.; Cottrell, J. S. (2004) Unimod: Protein modifications for mass spectrometry. Proteomics, 4(6):1534-1536. DOI
- Gorshkov V., Hotta S. Y. K., Verano?Braga T., Kjeldsen F. (2016) Peptide de novo sequencing of mixture tandem mass spectra. Proteomics, 16(18):2470-2479. DOI
- Horn D. M., Zubarev R. A., McLafferty, F. W. (2000) Automated de novo sequencing of proteins by tandem high-resolution mass spectrometry. Proc. Natl. Acad. Sci. USA, 97(19):10313-10317. DOI
- Liu X., Dekker L. J. M., Wu S., VanDuijn M. M., Luider T. M., Tolic N., Kou Q., Dvorkin M., Alexandrova S., Vyatkina K., Pasa-Tolic L., Pevzner P. A. (2014) De novo protein sequencing by combining top-down and bottom-up tandem mass spectra. J. Proteome Res., 13(7):3241-3248. DOI
- Liu X., Inbar Y., Dorrestein P. C., Wynne C., Edwards N., Souda P., Whitelegge J. P., Bafna V., Pevzner P. A. (2010) Deconvolution and database search of complex tandem mass spectra of intact proteins: a combinatorial approach. Mol. Cell Proteomics, 9(12):2772-2782. DOI
- Ecker D. M., Jones S. D., Levine H. L. (2015) The therapeutic monoclonal antibody market. MAbs, 7(1):9-14. DOI
- Tran N. H., Rahman M. Z., He L., Xin L., Shan B., Li M. (2016) Complete de novo assembly of monoclonal antibody sequences. Sci. Rep., 6:31730. DOI
- Guthals A., Gan Y., Murray L., Chen Y., Stinson J., Nakamura G., Lill J. R., Sandova W., Bandeira N. (2017) De novo MS/MS sequencing of native human antibodies. J. Proteome Res., 16 (1):45-54. DOI
- Vonk F. J., Casewell N. R., Henkel C. V., Heimberg A. M., Jansen H. J., McCleary R. sJ., Kerkkamp H. M., Vos R. A., Guerreiro I., Calvete J. J., Wuster W., Woods A. E., Logan J. M., Harrison R. A., Castoe T. A., de Koning A. P., Pollock D. D., Yandell M., Calderon D., Renjifo C., Currier R. B., Salgado D., Pla D., Sanz L., Hyder A. S., Ribeiro J. M., Arntzen J. W., van den Thillart G. E., Boetzer M., Pirovano W., Dirks R-P., Spaink H. P., Duboule D., McGlinn E., Kini R. M., Richardson M. K. (2013) The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc. Natl. Acad. Sci. USA, 110:20651-20656. DOI
- Petras D., Heiss P., Harrison R. A., Sussmuth R. D., Calvete J. J. (2016) Top-down venomics of the East African green mamba, Dendroaspis angusticeps, and the black mamba, Dendroaspis polylepis, highlight the complexity of their toxin arsenals. J. Proteomics, 46:148-164. DOI
- Bhatia S., Kil Y. J., Ueberheide B., Chait B. T., Tayo L., Cruz L., Lu B., Yates III J. R., Bern M. (2012) Constrained de novo sequencing of conotoxins. J. Proteome Res., 11(8): 4191-4200. DOI
- Pukala T. L., Bowie J. H., Maselli V. M., Musgrave I. F., Tyler M. J. (2006) Host-defence peptides from the glandular secretions of amphibians: structure and activity. Nat. Prod. Rep., 23(3):368-393. DOI
- Samgina T. Yu., Artemenko K. A., Gorshkov V. A., Ogourtsov S. V., Zubarev R. A., Lebedev A. T. (2008) De novo sequencing of peptides secreted by the skin glands of the Caucasian Green Frog Rana ridibunda. Rapid Commun Mass Spectrom., 22(22):3517-3525. DOI
- Lebedev A., Samgina T. (2013) O chem mogut rasskazat' lyagushki? Izuchenie peptidnogo sostava kozhnogo sekreta amfibij. Analitika, 5(12):38-47.
- Simmaco M., Mignogna G., Barra D., Bossa F. (1994) Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J. Biol. Chem., 269(16):11956-11961.
- Terterov I., Vyatkina K., Kononikhin A. S., Boitsov V., Vyazmin S., Popov I. A., Nikolaev E. N., Pevzner P., Dubina M. (2014) Application of de novo sequencing tools to study abiogenic peptide formations by tandem mass spectrometry. The case of homo?peptides from glutamic acid complicated by substitutions of hydrogen by sodium or potassium atoms. Rapid Commun Mass Spectrom., 28(1):33-41. DOI
- Robidart J., Callister S. J., Song P., Nicora C. D., Wheat C. G., Girguis P. R. (2013) Characterizing microbial community and geochemical dynamics at hydrothermal vents using osmotically driven continuous fluid samplers. Environ. Sci. Technol., 47(9):4399-4407. DOI
- Menschaert G., Vandekerckhove T. T., Baggerman G., Landuyt B., Sweedler J. V., Schoofs L., Luyten W., Van Criekinge W. (2010) A hybrid, de novo based, genome-wide database search approach applied to the sea urchin neuropeptidome. J. Proteome Res., 9(2):990-996. DOI
- Carrasco M. A., Buechler S. A., Arnold R. J., Sformo T., Barnes B. M., Duman J. G. (2011) Elucidating the biochemical overwintering adaptations of larval Cucujus clavipes puniceus, a nonmodel organism, via high throughput proteomics. J. Proteome Res., 10(10):4634-4646. DOI
- Laskay U.A., Srzentic K., Monod M., Tsybin Y.O. (2014) Extended bottom-up proteomics with secreted asparatic protease Sap9. J. Proteomics, 110:20-31. DOI
- Srzentic K., Fornelli L., Laskay U.A., Monod M., Beck A., Ayoub D., Tsybin Y.O. (2014) Advantages of extended bottom-up proteomics using Sap9 for analysis of monoclonal antibodies. Anal. Chem., 86(19):9945-9953. DOI
- Devabhaktuni A., Elias J. E. (2016) Application of de novo sequencing to large-scale complex proteomics data sets. J. Proteome Res., 15(3):732-742.DOI
- Yang H., Chi H., Zhou W.-J., Zeng W.-F., Liu C., Wang R.-M., Wang Z.-W., Niu X.-N., Chen Z.-L., He S.-M. (2018) pSite: Amino acid confidence evaluation for quality control of de novo peptide sequencing and modification site localization. J. Proteome Res., 17(1):119-128. DOI