Бинарная классификация соединений, проходящих и не проходящих через гемато-энцефалический барьер, созданная методом логистической регрессии
##plugins.themes.bootstrap3.article.main##
Аннотация
Созданы устойчивые классификационные предсказательные модели 83 лекарственных средств, преодолевающих и не преодолевающих гематоэнцефалический барьер, построенные методом логистической регрессии с использованием физико-химических дескрипторов, характеризующих стерические и электростатические взаимодействия и энергию водородной связи. Модели сбалансированы, их уровень предсказания составил 75-80%.
##plugins.themes.bootstrap3.article.details##
Как цитировать
Раевский O., Полианчик D., & Раевская O. (2018). Бинарная классификация соединений, проходящих и не проходящих через гемато-энцефалический барьер, созданная методом логистической регрессии. Biomedical Chemistry: Research and Methods, 1(3), e00065. https://doi.org/10.18097/BMCRM00065
Выпуск
Раздел
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ
Библиографические ссылки
- Wager, T.T.; Chandrasekaran, R.Y.; Hou, X.; Troutman, M.D.; Verhoest, P.R.; Villalobos, A.; Will, Y. (2010). Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chemical Neuroscience,1(6), 420-434. DOI
- Bradbury, M. W. B. (1979). The concept of a blood-brain barrier. John Wiley & Sons.
- Young, R.C.; Mitchell, R.C.; Brown, T.H.; Ganellin, C.R.; Griffiths, R.; Jones, M.; Rana, K.K.; Saunders, D.; Smith, I.R.; Sore, N.E.; Wilks, T.J. (1988). Development of a new physicochemical model for brain penetration and its application to the design of centrally acting H2 receptor histamine antagonists. Journal of Medicinal Chemistry, 31(3), 656–671. DOI
- van de Waterbeemd, H.D.; Kansy, M. (1992). Hydrogen-bonding capacity and brain penetration. Chimia, 46(7-8), 299-303.
- Kelder, J.; Grootenhuis, P.D.J.; Bayada, D.M.; Delbressine, L.P.; Ploemen, J.P. (1999). Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharmaceutical Research, 16(10), 1514-1519. DOI
- Gleeson, M.P. (2008). Generation of a set of simple, interpretable ADMET rules of thumb.Journal of Medicinal Chemistry, 51(4), 817-834. DOI
- Waring, M.J. (2009). Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower logD limits based on permeability.Bioorganic & Medicinal Chemistry Letters, 19(10), 2844-2851. DOI
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Review, 23(1-3), 3-26. DOI
- Wager, T.T.;Hou, X.; Verhoest, P.R.; Villalobos, A. (2010).Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chemical Neuroscience, 1(6), 435-439. DOI
- Rankovic, Z. (2015). CNS drug design: balancing physicochemical properties for optimal brain exposure.Journal of Medicinal Chemistry, 58(6), 2584-2608. DOI
- Rankovic, Z. (2017). CNS physicochemical property space shaped by a diverse set of molecules with experimentally determined exposure in the mouse brain. Journal of Medicinal Chemistry, 60(14), 5943-5954. DOI
- van de Waterbeemd, H.D.; Camenisch, G.; Folkers, G.; Raevsky, O.A. (1996). Estimation of CACO-2 cell permeability using calculated molecular descriptors. Quantitative Structure-Activity Relationships, 15(6), 480-490. DOI
- van de Waterbeemd, H.D.; Camenisch, G.; Folkers, G.; Chretien, J.R.; Raevsky, O.A. (1998). Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. Journal of Drug Targeting, 6(2), 151-165. DOI
- Raevsky, O.A.; Grigorev, V.Y.;Polianczyk, D.E.;Sandakov, G.I.; Solodova, S.L.; Yarkov, A.V.; Bachurin, S.O.; Dearden, J.C. (2016). Physicochemical property profile for brain permeability: comparative study by different approaches. Journal of Drug Targeting, 24(7), 655-662. DOI
- Raevsky, O.A. (2016). CNS multiparameter optimization approach: is it in accordance with Occam's razor principle? Molecular Informatics, 35(3-4), 94-98. DOI
- Raevsky, O.A.; Polianczyk, D.E.; Mukhametov, A.; Grigorev, V.Y. (2016). Assessment of the classification abilities of the CNS multi-parametric optimization approach by the method of logistic regression. SAR and QSAR in Environmental Research, 27(8), 629-635. DOI
- 17. Raevsky, O.A. (2018). Hydrogen Bond Contribution to Drug Bioavailability: cheminformatics approach. Biomedical Chemistry: Research and Methods, 1(3), e00060. DOI
- Raevsky, O.A.; Solodova, S.L.; Lagunin, A.A.; Poroikov, V.V. (2014). Computer Modeling of Blood-Brain Barrier Permeability for Physiologically Active Compounds. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 60(2), 161-181. DOI
- Ooms, F.; Weber, P.; Carrupt, P.-A.; Testa, B. (2002). A simple model to predict blood–brain barrier permeation from 3D molecular fields. Biochimica et Biophysica Acta, 1587(2-3), 118-125. DOI
- Raevskij, O.A. (2015). Modelirovanie sootnoshenij “struktura-svojstva”, Dobrosvet, M.
- Singh, N.; Chaudhury, S.; Liu, R.; AbdulHameed, M.D.M.; Tawa, G.; Wallqvist, A. (2012). QSAR Classification Model for Antibacterial Compounds and Its Use in Virtual Screening.Journal of Chemical Information and Modeling, 52(10), 2559-2569. DOI
- Riniker, S.; Wang, Y.; Jenkins, J.L.; Landrum, G.A. (2014). Using Information from Historical High-Throughput Screens to Predict Active Compounds. Journal of Chemical Information and Modeling, 54(7), 1880-1891. DOI
- Iwata, H.; Sawada,R.; Mizutani, S.; Yamanishi, Y. (2015). Systematic Drug Repositioning for a Wide Range of Diseases with Integrative Analyses of Phenotypic and Molecular Data. Journal of Chemical Information and Modeling, 55(2), 446-459. DOI
- Yee, L.C.; Wei, Y.C. (2012). Statistical Modelling of Molecular Descriptors in QSAR/QSPR, Vol. 2 (Eds: Dehmer, M.; Varmuza, K.; Bonchev, D.), Wiley-VCH, Verlag GmbH & Co. KGaA., 1-31.
- SPSS Inc. Released 2008. SPSS Statistics for Windows, Version 17.0. Chicago: SPSS Inc.
- DRAGON, version 5.5; Talete srl: Milano, Italy (2011).
- Raevsky, O.A.; Grigor’ev, V.Y.; Trepalin, S.V. HYBOT program, registration by Russian State Patent Agency No. 990090 of 26.02.99