Компьютерная оценка селективности ингибирования мускариновых рецепторов M1-M4
##plugins.themes.bootstrap3.article.main##
Аннотация
Разработан набор моделей для предварительной оценки значения константы ингибирования (Ki) потенциальных лигандов к четырем ацетилхолиновым мускариновым рецепторам М1-М4. В работе использованы сведения о трёхмерной структуре рецепторов человека М1, M2 и М4, а также модель рецептора М3, построенная по гомологии на основе структуры крысиного рецептора М3. Значения Ki для 42 соединений взяты из литературных источников. Для моделирования комплексов “белок-лиганд” использовали процедуры молекулярного докинга и последующей молекулярной динамики. На основании данных, полученных в ходе симуляции молекулярной динамики с использованием методов MM-PBSA/MM-GBSA, рассчитаны покомпонентно энергетические характеристики комплексов, которые были использованы в качестве независимых переменных для построения уравнений линейной регрессии с целью предсказания величины pKi. Уравнения, полученные для отдельных рецепторов, позволяют предсказывать pKi со средней точностью 0.65 логарифмической единицы.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Eglen, R. M. (2006). Muscarinic receptor subtypes in neuronal and non?neuronal cholinergic function. Autonomic and Autacoid Pharmacology, 26(3), 219-233. DOI
- Langmead, C. J., Watson, J., & Reavill, C. (2008). Muscarinic acetylcholine receptors as CNS drug targets. Pharmacology & therapeutics, 117(2), 232-243. DOI
- Freedman, S. B., Dawson, G. R., Iversen, L. L., Baker, R., & Hargreaves, R. J. (1993). The design of novel muscarinic partial agonists that have functional selectivity in pharmacological preparations in vitro and reduced side-effect profile in vivo. Life sciences, 52(5-6), 489-495. DOI
- Mikurova, A. V., Rybina, A. V., & Skvortsov, V. S. (2016). Prediction of selective inhibition of neuraminidase from various influenza virus strains by potential inhibitors. Biomeditsinskaya khimiya, 62(6), 691-703. DOI
- Thal, D. M., Sun, B., Feng, D., Nawaratne, V., Leach, K., Felder, C. C., ... & Kobilka, T. S. (2016). Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature, 531(7594), 335.
- Haga, K., Kruse, A. C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., ... & Kobayashi, T. (2012). Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature, 482(7386), 547.
- Kruse, A. C., Hu, J., Pan, A. C., Arlow, D. H., Rosenbaum, D. M., Rosemond, E., ... & Shaw, D. E. (2012). Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 482(7386), 552.
- Blundell, T., Carney, D., Gardner, S., Hayes, F., Howlin, B., Hubbard, T., ... & Sutcliffe, M. (1988). Knowledge?based protein modelling and design. European Journal of Biochemistry, 172(3), 513-520. DOI
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., ... & Bourne, P. E. (2000). The protein data bank. Nucleic acids research, 28(1), 235-242. DOI
- SYBYL-X 2.1. Certara, Princeton, NJ, USA.
- Halgren, T. A. (1996). Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. Journal of Computational Chemistry, 17(5/6), 520-552. DOI
- Scapecchi, S., Marucci, G., Matucci, R., Angeli, P., Bellucci, C., Buccioni, M., ... & Teodori, E. (2001). Structure–activity relationships in 2, 2-diphenyl-2-ethylthioacetic acid esters: unexpected agonistic activity in a series of muscarinic antagonists. Bioorganic & medicinal chemistry, 9(5), 1165-1174. DOI
- Alexander, S. P., Christopoulos, A., Davenport, A. P., Kelly, E., Marrion, N. V., Peters, J. A., ... & Southan, C. (2017). The Concise Guide to PHARMACOLOGY 2017/18: G protein-coupled receptors. British journal of pharmacology, 174(S1). DOI
- Dei, S., Bellucci, C., Buccioni, M., Ferraroni, M., Guandalini, L., Manetti, D., ... & Romanelli, M. N. (2007). Synthesis, affinity profile, and functional activity of muscarinic antagonists with a 1-methyl-2-(2, 2-alkylaryl-1, 3-oxathiolan-5-yl) pyrrolidine structure. Journal of medicinal chemistry, 50(6), 1409-1413. DOI
- Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A geometric approach to macromolecule-ligand interactions. Journal of molecular biology, 161(2), 269-288. DOI
- Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., ... & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of computational chemistry, 26(16), 1668-1688. DOI
- Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in drug discovery and design, 18(1), 113-135. DOI
- Federal Research Center Computer Science and Control of Russian Academy of Sciences [Electronic resource]: site. - Moscow: FRC CS RAS.- URL: http://hhpcc.frccsc.ru (application date: 09/12/2018)