Steroidal Inhibitors of CYP17A1 – the Template for Novel Anti-Cancer Agents Development

  • A. S. Latysheva Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • A. Yu. Misharin Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
Keywords: CYP17A1 inhibitors; abiraterone; galeterone; nitrogen-containing steroidal derivatives; anti-proliferative activity; anti-cancer activity


This review deals with studies of researches of novel CYP17A1 steroidal inhibitors and relative compounds published over the last ten years. The review contains six chapters in which novel targets of well-known CYP17A1 inhibirors (abiraterone and galeterone), anti-cancer and anti-proliferative activities of them major metabolites and new synthetic analogs, and in addition another nitrogen-containing androstane and pregnane derivatives are considered. In the review 354 structures of novel steroid derivatives and them anti-cancer efficiency data are considered. Analysis of the literature data allows us to consider steroidal inhibitors of CYP17A1 as multi-target anti-cancer agents with high pharmacological potential.


  1. Huggins, C. & Hodges, C. V. (1941). Studies on Prostatic Cancer. I. The Effect of Castration, of Estrogen and of Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate. Cancer Reseach, 1(4), 293-297.

  2. Huggins, C, Stevens R. E., Hodges C. V. (1941). Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Archives of surgery. 43(2), 209–223. DOI

  3. Kan, P. B.; Hirst, M. A.; Feldman, D. (1985). Inhibition of steroidogenic cytochrome P-450 enzymes in rat testis by ketoconazole and related imidazole anti-fungal drugs. Journal Steroid Biochemistry, 23(6A), 1023-1029. DOI

  4. de Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., et al. (2011). Abiraterone and increased survival in metastatic prostate cancer. New England Journal of Medicine, 364, 1995–2005. DOI

  5. Handratta, V.D., Vasaitis, T.S., Njar, V.C.O., Gediya, L.K., Kataria, R., Chopra, P., Newman, D., Farquhar, R., Guo, Z., Qiu, Y., Brodie, A.M.H. (2005). Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: Synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. Journal of Medicinal Chemistry, 48, 2972–2984. DOI

  6. Clement, O. O., Freeman, C. M., Hartmann, R. W., Handratta, V. D., Vasaitis, T. S., Brodie, A. M. H., Njar, V. C. O. (2003). Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy. Journal of Medicinal Chemistry, 46 (12), 2345–2351. DOI

  7. DeVore, N. M. & Scott, E. E. (2012). Cytochrome P450 17A1 structures with prostate cancer drugs Abiraterone and TOK-001. Nature, 482(7383), 116–119. DOI

  8. Njar, V. C., Brodie, A. M. (1999). Inhibitors of 17a-hydroxylase/17,20-lyase (CYP17): potential agents for the treatment of prostate cancer. Current Pharmaceutical Design, 5, 163–180.

  9. Hartmann, R. W., Ehmer, P.B., Haidar, S., Hector, M., Jose, J., Klein, C. D. P., et al. (2002). Inhibition of CYP 17, a new strategy for the treatment of prostate cancer. Archiv der Pharmazie, 4, 119–128.

  10. Bruno, R.D., Njar, V.C. (2007). Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorganic & Medicinal Chemistry, 15(15), 5047–60. DOI

  11. Baston, E., Leroux, F.R. (2007). Inhibitors of steroidal cytochrome P450 enzymes as targets for drug development. Recent Patents on Anti-Cancer Drug Discovery, 2(1), 31–58. DOI

  12. Moreira, V. M., Salvador, J. A. R, Vasaitis, T.S., Njar, V.C.O. (2008). CYP17 Inhibitors for Prostate Cancer Treatment – An Update. Current Medicinal Chemistry, 15, 868-899. DOI

  13. Owen, C. P. (2009). 17α-Hydroxylase/17,20-Lyase (P45017α) Inhibitors in the Treatment of Prostate Cancer. Anti-Cancer Agents in Medicinal Chemistry, 9, 613-626. DOI

  14. Vasaitis, T. S., Bruno, R. D., Njar, V. C. O. (2011). CYP17 inhibitors for prostate cancer therapy. Journal of Steroid Biochemistry & Molecular Biology, 125, 23–31. DOI

  15. Salvador, J. A. R., Pinto, R. M. A., Silvestre, S. M. (2013). Steroidal 5α-reductase and 17α-hydroxylase/17,20-lyase (CYP17) inhibitors useful in the treatment of prostatic diseases. Journal of Steroid Biochemistry & Molecular Biology, 137, 199–222. DOI

  16. Salvador, J. A. R., Moreira, V. M., Silvestre, S. M. (2012). Steroidal CYP17 Inhibitors for Prostate Cancer Treatment: From Concept to Clinic. INTECH. Chapter 12. DOI

  17. Auchus, M. L., Auchus, R. J. (2012). Human steroid biosynthesis for the oncologist. Journal of Investigative Medicine, 60(2), 495-503. DOI

  18. Yin, L. & Hu, Q. (2014). CYP17 inhibitors - abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nature Reviews Urology, 11, 32-42. DOI

  19. Malikova, J., Brixius-Anderko, S., Udhane, S. S., Parween, S., Dick, B., Bernhardt, R., Pandey, A. V. (2017). CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. Journal of Steroid Biochemistry and Molecular Biology, 174, 192-200. DOI

  20. Mostaghel, E.A., Marck, B., Plymate, S., Vessella, R. L., Balk, S. P., Matsumoto, A. M., Nelson, P. S., Montgomery, R. B. (2011). Resistance to CYP17A1 inhibition with abiraterone in castration resistant prostate cancer: Induction of steroidogenesis and androgen receptor splice variants. Clinical Cancer Research, 17(18), 5913–5925. DOI

  21. Yip, C. K.Y., Bansal, S., Wong, S. Y., Lau, A. J. (2018). Identification of Galeterone and Abiraterone as Inhibitors of Dehydroepiandrosterone Sulfonation Catalyzed by Human Hepatic Cytosol, SULT2A1, SULT2B1b, and SULT1E1. Drug Metabolism and Disposition. 46(4); 470-482. DOI

  22. Udhane, S. S., Dick, B., Hu, Q., Hartmann, R. H., Pandey, A. V. (2016). Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis. Biochemical and Biophysical Research Communications, 477(4), 1005-1010. DOI

  23. Pia, A., Vignani, F., Attard, G., Tucc,i M., Bironzo, P., Scagliotti, G., Arlt, W., Terzolo, M. & Berruti, A. (2013). Strategies for managing ACTH dependent mineralocorticoid excess induced by abiraterone. Cancer Treatment Reviews, 39(8), 966-973. DOI

  24. Richards, J., Lim, A. C., Hay, C. W., Taylor, A. E, Wingate, A., Nowakowska, K., Pezaro, C., Carreira, S., Goodall, J., Arlt, W., McEwan, I. J., de Bono, J. S., Attard, G. (2012). Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Research. 72(9), 2176-2182. DOI

  25. Norris, J. D., Ellison, S. J., Baker, J. G., Stagg, D. B., Wardell, S.E., Park, S., Alley, H. M., Baldi, R. M., Yllanes, A., Andreano, K. J., Stice, J. P., Lawrence, S. A., Eisner, J. R., Price, D. K., Moore, W. R., Formulag, W. D., McDonnell, D. P. (2017). Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer. The Journal of Clinical Investigation, 127(6), 2326-2338. DOI

  26. Bonnefoi, H., Grellety, T., Tredan, O., Saghatchian, M., Dalenc, F., Mailliez, A., L'Haridon, T., Cottu, P., Abadie-Lacourtoisie, S., You, B., Mousseau, M., Dauba, J., Del Piano, F., Desmoulins, I., Coussy, F., Madranges, N., Grenier. J., Bidard, F.C., Proudhon, C., MacGrogan, G., Orsini, C., Pulido, M., Gonçalves, A. (2016). A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Annals of Oncology, 27(5), 812-818. DOI

  27. Banerjee, S., Kilburn, L., Bowen, R., Tovey, H., Hall, M., Kaye, S., Rustin, G., Gore, M., McLachlan, J., Attygalle, A., Tunariu, N., Lima, J. P., Chatfield, P., Jeffs, L., Folkerd, E., Hills, M., Perry, S., Attard, G., Dowset, M., Bliss, J. (2016). Principal results of the cancer of the ovary abiraterone trial (CORAL): A phase II study of abiraterone in patients with recurrent epithelial ovarian cancer (CRUKE/12/052). Annals of Oncology, 27(6), LBA33. DOI

  28. Njar, V. C., Brodie, A. M. (2015). Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. Journal of Medicinal Chemistry, 58(5), 2077-2087. DOI

  29. Dransfield, D. T., Namdev, N., Jacoby, D. B., Ferrante, K. (2016). Correlation of galeterone-induced degradation of the androgen receptor with inhibition of a deubiquitinating enzyme. Journal of Clinical Oncology, 34(2_suppl), 345-345. DOI

  30. Hupe, M. C., Offermann, A., Perabo, F., Chandhasin, C., Perner, S., Merseburger, A. S., Cronauer, M. V. (2018). Inhibitoren des Androgenrezeptor-N-Terminus’ Zielgerichtete Therapien gegen die Achillesferse verschiedener Androgenrezeptormoleküle im fortgeschrittenen Prostatakarzinom. Der Urologe, 57(2), 148–154. DOI

  31. Grossebrummel, H., Peter, T., Mandelkow, R., Weiss, M., Muzzio, D., Zimmermann, U., Walther, R., Jensen, F., Knabbe, C., Zygmunt, M., Burchardt, M., Stope, M. B. (2016). Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways. International Journal of Oncology, 48(2), 793-800. DOI

  32. Kwegyir-Afful, A.K., Ramalingam, S., Purushottamachar, P., Ramamurthy, V. P., Njar, V. C. (2015). Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget, 6(29), 27440-27460. DOI

  33. Kwegyir-Afful, A. K., Bruno, R. D., Purushottamachar, P., Murigi, F.N., Njar, V. C. (2016). Galeterone and VNPT55 disrupt Mnk-eIF4E to inhibit prostate cancer cell migration and invasion. FEBS Journal, 283(21), 3898-3918. DOI

  34. Kwegyir-Afful, A. K., Murigi, F. N., Purushottamachar, P., Ramamurthy, V. P., Martin, M. S., Njar, V. C. O. (2017). Galeterone and its analogs inhibit Mnk-eIF4E axis, synergize with gemcitabine, impede pancreatic cancer cell migration, invasion and proliferation and inhibit tumor growth in mice. Oncotarget, 8(32), 52381–402. DOI

  35. Li, Z., Bishop, A. C., Alyamani, M., Garcia, J. A., Dreicer, R., Bunch, D., Liu, J., Upadhyay, S. K., Auchus, R. J., Sharifi, N. (2015). Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature, 523 (7560), 347-351. DOI

  36. Alyamani, M., Li, Z., Berck, M., Li, J., Tang, J., Upadhyay, S., Auchus, R. J., Sharifi, N. (2017). Steroidogenic metabolism of galeterone reveals a diversity of biochemical activities. Cell Chemical Biology. 2017, 24(7), 1-8. DOI

  37. Li, R., Evaul, K., Sharma, K. K., Chang, K. H., Yoshimoto, J., Liu, J., Auchus, R. J., Sharifi, N. (2012). Abiraterone Inhibits 3β-Hydroxysteroid Dehydrogenase: A Rationale for Increasing Drug Exposure in Castration-Resistant Prostate Cancer, Clinical Cancer Research, 18, 3571–3579. DOI

  38. Garrido, M., Peng, H. M., Yoshimoto, F. K., Upadhyay, S.K., Bratoeff, E., Auchus, R. J. (2014). A-ring modified steroidal azoles retaining similar potent and slowly reversible CYP17A1 inhibition as abiraterone. The Journal of Steroid Biochemistry and Molecular Biology, 143, 1–10. DOI

  39. Li, Z., Alyamani, M., Li, J., Rogacki, K., Abazeed, M., Upadhyay, S. K., Balk, S. P., Taplin, M.-E., Auchus, R. J., Sharifi, N. (2016). Redirecting abiraterone metabolism to fine tune prostate cancer anti-androgen therapy. Nature, 533(7604), 547-551. DOI

  40. Kostin, V. A., Zolottsev, V. A., Kuzikov, A. V., Masamrekh, R. A., Shumyantseva, V. V., Veselovsky, A. V., Stulov, S. V., Novikov, R. A., Timofeev, V. P., Misharin, A. Y. (2016). Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity. Steroids, 115, 114–122. DOI

  41. Brossard, D., Zhang, Y., Haider, S. H., Sgobba, M., Khalid, M., Legay, R., Duterque-Coquillaud, M., Galera, P., Rault, S., Dallemagne, P., Moslemi, S., El Kihel, S. (2013). N-substituted Piperazinopyridylsteroid Derivatives as Abiraterone Analogues Inhibit Growth and Induce Pro-apoptosis in Human Hormone-independent Prostate Cancer Cell Lines. Chemical Biology & Drug Design, 82(5), 620–629. DOI

  42. Purushottamachar, P., Godbole, A. M., Gediya, L. K., Martin, M. S., Vasaitis, T. S., Kwegyir-Afful, A. K., Ramalingam, S., Ates-Alagoz, Z., Njar, V. C. O. (2013). Systematic Structure Modifications of Multitarget Prostate Cancer Drug Candidate Galeterone To Produce Novel Androgen Receptor Down-Regulating Agents as an Approach to Treatment of Advanced Prostate Cancer. Journal of Мedicinal Сhemistry, 56(12), 4880-4898. DOI

  43. Purushottamachar, P., Kwegyir-Afful, A. K., Martin, M. S., Ramamurthy, S., Ramalingam, S., Njar, V. C. O. (2016). Identification of Novel Steroidal Androgen Receptor Degrading Agents Inspired by Galeterone 3β-Imidazole Carbamate. ACS Мedicinal Сhemistry Letters, 7(7), 708-713. DOI

  44. Banday, A. H., Mira, B. P., Khazir, J., Suri, K. A., Kumar, H. M. S. (2010). Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids, 75(12), 805-809. DOI

  45. Banday, A. H., Akram, S. M. M., Parveen, R., Bashir, N. (2014). Design and synthesis of D-ring steroidal isoxazolines and oxazolines as potential antiproliferative agents against LNCaP, PC-3 and DU-145 cells. Steroids, 87, 93-98. DOI

  46. Ondre, D., Wolfling, J., Toth, I., Szecsi, M., Julesz, J., Schneider, G. (2009). Steroselective synthesis of some steroidal oxazolines, as novel potential inhibitors of 17α-hydroxylase-C17,20-lyase. Steroids, 74(13-14), 1025–1032. DOI

  47. Wolfling, J., Oravecz, E. A., Ondre, D., Mernyak, E., Schneider, G., Toth, I., Szecsi, M., Julesz, J. (2006). Stereoselective synthesis of some 17beta-dihydrooxazinyl steroids, as novel presumed inhibitors of 17α-hydroxylase-C17,20-lyase., Steroids, 71(9), 809–816. DOI

  48. Banday, A. H., Shameem, S. A., Jeelani, S. (2014). Steroidal pyrazolines and pyrazoles as potential 5a-reductase inhibitors: Synthesis and biological evaluation. Steroids, 92, 13–19. DOI

  49. Ivanyi, Z., Wolfling, J., Gorbe, T., Szecsi, M., Wittmann, T., Schneider, G. (2010). Synthesis of regioisomeric 17β-N-phenylpyrazolyl steroid derivatives and their inhibitory effect on 17α-hydroxylase/C17,20-lyase. Steroids, 75(6), 450–456. DOI

  50. Ivanyi, Z., Szabo, N., Huber, J., Wolfling, J., Zupko, I., Szecsi, M., Wittmann, T., Schneider, G. (2012). Synthesis of D-ring-substituted (5’R)- and (5’S)-17β-pyrazolinylandrostene epimers and comparison of their potential anticancer activities. Steroids, 77(5), 566-574. DOI

  51. Ivanyi, Z., Szabo, N., Wolfling, J., Szecsi, M., Julesz, J., Schneider, G. (2012). Novel series of 17β-pyrazolylandrosta-5,16-diene derivatives and their inhibitory effect on 17α-hydroxylase/C17,20-lyase. Steroids, 77(11), 1152-1159. DOI

  52. Szabo, N., Ivanyi, Z., Szecsi, M., Julesz, J., Mernyak, E., Huber, J., Wolfling, J., Minorics, R., Zupko, I., Schneider, G. (2015). Synthesis of methoxycarbonylpyrazolylandrostene derivatives, and their potential inhibitory effect on androgen biosynthesis and cell proliferation. Steroids, 98, 143–152. DOI

  53. Kiss, A., Herman, B. E., Gorbe, T., Mernyak, E., Molnar, B., Wolfling, J., Szecsi, M., Schneider, J. (2018). Synthesis of novel 17-triazolyl-androst-5-en-3-ol epimers via Cu(I)-catalyzed azide-alkyne cycloaddition and their inhibitory effect on 17α-hydroxylase/C17,20-lyase. Steroids. DOI

  54. Silva-Ortiza, A. V., Bratoeff, E., Ramírez-Apan, M. T., García-Becerra, R., Ordaz-Rosado, D., Noyola-Martínez, N., Castillo-Bocanegra, R., Barrera, D. (2016). Synthesis and biological activity of two pregnane derivatives with a triazole or imidazole ring at C-21. The Journal of Steroid Biochemistry and Molecular Biology, 159, 8–18. DOI

  55. Silva-Ortiz, A. V., Bratoeff, E., Ramírez-Apan, T., Heuze, Y., Sánchez, A., Soriano, J., Cabeza, M., (2015). Synthesis and activity of novel 16-dehydropregnenolone acetate derivatives as inhibitors of type 1 5α-reductase and on cancer cell line SK-LU-1. Bioorganic & Medicinal Chemistry, 23(24), 7535-7542. DOI

  56. Silva-Ortiz, A. V., Bratoeff, E., Ramírez-Apan, T., Heuze, Y., A., Soriano, J., Moreno, I., Bravo, M., Bautista, L., Cabeza, M. (2017). Synthesis of new derivatives of 21-imidazolyl-16-dehydropregnenolone as inhibitors of 5α-reductase 2 and with cytotoxic activity in cancer cells. Bioorganic & Medicinal Chemistry, 25(5), 1600-1607. DOI

  57. Banday, A. H., Shameen, S. A., Gupta, B. D., Kumar, H. M. S. (2010). D-ring substituted 1,2,3-triazolyl 20-keto pregnenanes as potential anticancer agents: Synthesis and biological evaluation. Steroids, 75(12), 801-804. DOI

  58. Szabó, N., Ajduković, J. J., Djurendić, E. A., Sakač, M. N., Ignáth, I., Gardi, J., Mahmoud, G., Klisurić, O. R., Jovanović-Šanta, S., Penov Gaši, K. M., Szécsi, M. (2015). Determination of 17α-hydroxylase-C17,20-lyase (P450 17α) enzyme activities and their inhibition by selected steroidal picolyl and picolinylidene compounds. Acta Biologica Hungarica, 66(1), 41–51. DOI

  59. Djurendic, E., Ajducovic, J. J., Sakac, M., Csanadi, J., Kojic, V., Bogdanovic, G., Penov Gasi, K. (2012). Synthesis and cytotoxic activity of some 17-picolyl and 17-picolinylidene androstane derivatives. European journal of medicinal chemistry, 54, 784-792. DOI

  60. Ajducovic, J. J., Djurendic, E., Petri, E. T., Klisuric, O., Celic, A., Sakac, M., Jakimov, D., Penov Gasi, K. (2013). 17(E)-Picolinylidene androstane derivatives as potential inhibitors of prostate cancer cell growth: Antiproliferative activity and molecular docking studies. Bioorganic & Medicinal Chemistry, 21(23), 7257–7266. DOI

  61. Jakimov, D. S., Kojic, V. V., Aleksic, L. D., Bogdanovic, G. M., Ajdukovic, J. J., Djurendic, E. A., Penov Gaši, K. M., Sakac, M. N., Jovanović-Šanta, S. S. (2015). Androstane derivatives induce apoptotic death in MDA-MB-231 breast cancer cells. Bioorganic & Medicinal Chemistry, 23(22), 7189–7198. DOI

  62. Gasi, K, M, Djurendic-Brenesel, M., Djurendic, E., Sakac, M., Csanadi, J., Daljev, J., et al. (2007). Synthesis and biological evaluation of some 17-picolyl and 17-picolinylidene androst-5-ene derivatives. Steroids, 72(1), 31–40. DOI

  63. Djurendic, E., Daljev, J., Sakac, M., Csanadi, J., Jovanovic-Santa, S., Andric, S., Klisuric, O., Kojic, V., Bogdanovic, G., Djurendic-Brenesel, M., Novakovic, S., Penov Gasi, K. (2008). Synthesis of some epoxy and/or N-oxy 17-picolyl and 17-picolinylidene androst-5-ene derivatives and evaluation of their biological activity. Steroids; 73(1), 129–138. DOI

  64. Kuzikov, A. V., Dugin, N. O., Stulov, S. V., Shcherbinin, D. S., Zharkova, M. S., et al. (2014). Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17a-hydroxylase/17,20-lyase (CYP17A1) inhibitors, Steroids, 88, 66–71. DOI

  65. Stulov, S. V., Dugin, N. O., Zharkova, M. S., Shcherbinin, D. S., Kuzikov, A. V., Shumantseva V. V., Misharin, A. Yu., Veselovsky, A. V. (2015). Interaction of Novel Oxazoline Derivatives of 17(20)E-pregna-5,17(20)-Diene with Cytochrome P450 17A1 Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 9(2), 114–120. DOI

  66. Zolottsev, V. A., Tkachev, Y. V., Latysheva, A. S., Kostin, V. A., Novikov, R. A., Timofeev, V. P., Morozevich, G. E., Kuzikov, A. V., Shumyantseva, V. V., Misharin, A. Y. (2018). Comparison of [17(20)E]-21-Norpregnene oxazolinyl and benzoxazolyl derivatives as inhibitors of CYP17A1 activity and prostate carcinoma cells growth. Steroids, 129, 24–34. DOI

  67. Moreira, V. M. A., Vasaitis, T. S., Guo, Z., Njar, V. C. O, Salvador, J. A. R. (2008). Synthesis of Novel C17 Steroidal Carbamates. Studies on CYP17 Action, Androgen Receptor Binding and Function, and Prostate Cancer Cell Growth. Steroids, 73(12), 1217-1227. DOI

  68. Nikolić, A. R., Petri, E. T., Klisurić, O. R., Ćelić, A. S., Jakimov, D. S., Djurendić, E. A., Penov Gaši, K. M., Sakač, M. N. (2015). Synthesis and anticancer cell potential of steroidal 16,17-seco-16,17a-dinitriles: Identification of a selective inhibitor of hormone-independent breast cancer cells. Bioorganic & Medicinal Chemistry, 23(4), 703-711. DOI

  69. Cortes-Benítez, F., Cabeza, M., Ramírez-Apan, M. T., Alvarez-Manrique, B., Bratoeff, E. (2016). Synthesis of 17β-N-arylcarbamoylandrost-4-en-3-one derivatives and their anti-proliferative effect on human androgen-sensitive LNCaP cell line. European Journal of Medicinal Chemistry, 121, 737-746. DOI

  70. Bratoeff, E., Garrido, M., Ramírez-Apan, M. T., Heuze, M., Sanchez, A., Soriano, J., Cabeza, M. (2014). Effect of dehydroepiandrosterone derivatives on the activity of 5α-reductase isoenzymes and on cancer cell line PC-3. Bioorganic & Medicinal Chemistry, 22(21), 6233-6241. DOI

  71. Aggarwal, S., Thareja, S., Verma, A., Bhardwaj, T. R., Kumar, M. (2010). An overview on 5α-reductase inhibitors. Steroids, 75(2), 109-153. DOI

  72. Schmidt, L. J., Tindall, D. J. (2011). Steroid 5α-reductase inhibitors targeting BPH and prostate cancer. The Journal of Steroid Biochemistry and Molecular Biology, 125(1-2), 32–38. DOI

  73. Vihko, P., Herrala, A., Harkonen, P., Isomaa, V., Kaija, H., Kurkela, R., Pulkka, A. (2006). Control of cell proliferation by steroids: the role of 17HSDs. Molecular and Cellular Endocrinology, 248(1-2), 141-148. DOI

  74. Day, J., Tutill, H., Purohit, A., Reed, M. (2008). Design and validation of specific inhibitors of 17{beta}-hydroxysteroid dehydrogenases for therapeutic application in breast and prostate cancer, and in endometriosis. Endocrine-Related Cancer, 15(3), 665-692. DOI

  75. Poirier, D. (2003). Inhibitors of 17beta-hydroxysteroid dehydrogenases. Current Medicinal Chemistry, 10(6), 453-77.

  76. Poirier, D. (2009). Advances in Development of Inhibitors of 17β-Hydroxysteroid Dehydrogenases. Anti-Cancer Agents in Medicinal Chemistry, 9, 642-60. DOI

  77. Poirier, D. (2010). 17beta-Hydroxysteroid dehydrogenase inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 20(9), 1123-1145. DOI

  78. Jegham, H., Maltais, R., Roy, J., Doillon, C., Poirier, D. (2012). Biological evaluation of a new family of aminosteroids that display a selective toxicity for various malignant cell lines. Anticancer Drugs, 23(8), 803–814. DOI

  79. Maltais, R., Tremblay, M. R., Ciobanu, L. C., Poirier, D. (2004). Steroids and combinatorial chemistry. Journal of Combinatorial Chemistry, 6(4), 443-456. DOI

  80. Poirier, D. (2008). New cancer drugs targeting the biosynthesis of estrogens and androgens. Drug Development Research, 69(6), 304-318. DOI

  81. Frank, E., Schneider, G. (2013). Synthesis of sex hormone-derived modified steroids possessing antiproliferative activity. Journal of Steroid Biochemistry & Molecular Biology, 301– 315. DOI