Electrochemical Methods for Studies of Biological Molecules

  • V. V. Shumyantseva Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; Biochemistry Department of Medico-Biological faculty Pirogov Russian National Research Medical University, Moscow, Russia
  • A. V. Kuzikov Institute of Biomedical Chemistry, 10 Pogodinskaya str, Moscow, 119121 Russia; Biochemistry Department of Medico-Biological faculty Pirogov Russian National Research Medical University, Moscow, Russia
  • T. V. Bulko Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • E. V. Suprun Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia
  • L. V. Sigolaeva Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; Lomonosov Moscow State University, Chemical Department, Moscow, Russia
  • R. A. Masamrech Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; Biochemistry Department of Medico-Biological faculty Pirogov Russian National Research Medical University, Moscow, Russia
  • A. I. Archakov Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; Biochemistry Department of Medico-Biological faculty Pirogov Russian National Research Medical University, Moscow, Russia
Keywords: electoanalysis; bioelectrochemistry; hemeproteins; DNA; drugs; medicinal preparations; electrooxidation; electrocatalysis

Abstract

This paper focuses on experimental data of electroanalysis of enzymes, proteins, peptides, DNA, and medicinal preparations, obtained by authors. Methods for enzyme electrodes preparation, methods for kinetic parameters calculations based on analysis of electrochemical data. Results are described as algorithm for efficient electrochemical reaction of biomolecules.

References

  1. Bard, A.E. (2001) Electrochemical methods. Fundamental and Applications, A.E. Bard, L.R. Faulkner. NY: Eds John Wiley & Sons, Second edition

  2. Scholz, F. (2002) Electroanalytical methods. Guide to Experiments and Applications. Springer-Verlag Berlin Heidelberg

  3. Wang, J. (2006) Analytical Electrochemistry, Third edition, p. 32, Wiley-VCH

  4. Compton, R., & Banks, C. (2011) Understanding voltammetry. (2nd edition), by Imperial College Press

  5. Laviron, E. (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry, 101, 19-28. DOI

  6. Shumkov, A.A., Suprun, E.V., Shatinina, S.Z., Lisitsa, A.V., Shumyantseva, V.V., & Archakov, A.I. (2013) Gold and Silver Nanoparticles for Electrochemical Detection of Cardiac Troponin I based on Striping Voltammetry. BioNanoScience, 3, 216-222. DOI

  7. Hrycay, E.G., & Bandiera, S.M. (2015) Monooxygenase, peroxygenase and peroxidase properties and reaction mechanism of cytochrome P450 enzymes. pp. 1-61. In EG Hrycay and SM Bandiera (eds.), Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology 851. Springer International Publishing SwitzerlandDOI

  8. Shumyantseva, V.V., Ivanov, Yu.D., Bistolas, N., Scheller, F.W., Archakov, A.I., & Wollenberger, U. (2004) Direct Electron Transfer of Cytochrome P450 2B4 at Electrodes Modified with Nonionic Detergent and Colloidal Clay Nanoparticles. Analytical Chemistry, 76, 6046-6052. DOI

  9. Shumyantseva, V.V., Bulko, T., Shich, E., Makhova, A., Kuzikov, A., & Archakov, A.A. (2015) Cytochrome P450 Enzymes and Electrochemistry: Crosstalk with Electrodes as Redox Partners and Electron Sources. pp. 229-246. In EG Hrycay and SM Bandiera (eds.), Monooxygenase, Peroxidase and Peroxygenase Properties and Mechanisms of Cytochrome P450. Advances in Experimental Medicine and Biology 851. Springer International Publishing Switzerland. DOI

  10. Bartlett, P.N. (Ed.), (2008) Bioelectrochemistry: Fundametals, Experimental Techniques and Applications, Ch. 2, John Wiley & Sons, Ltd., p. 268

  11. Hagen, K.D., Gillan, J.M., Im, S.-C., Landefeld, S., Mead, G., Hiley, M., et al. (2013). Electrochemistry of mammalian cytochrome P450 2B4 indicates tunable thermodynamic parameters in surfactant films. Journal of Inorganic Biochemistry, 129, 30-34. DOI

  12. Shumyantseva, V.V., Suprun, E.V., Bulko, T.V., & Archakov, A.I. (2014). Electrochemical methods for detection of post-translational modifications of proteins. Biosensors and Bioelectronics, 61, 131-139. DOI

  13. Brabec, V, & Mornstein, V. (1980). Biochimica et Biophysica Acta, 625, 43-50. DOI

  14. Reynaud, J.A., Malfoy, B., & Bere, A. (1980). The electrochemical oxidation of three proteins: RNAase A, bovine serum albumin and concanavalin A at solid electrodes. Journal of Electroanalytical and Chemical Interfacial Electrochemistry 116, 595-606. DOI

  15. Suprun, E.V., Zharkova, M.S., Morozevich, G.E., Veselovsky, A.V., Shumyantseva, V.V. & Archakov, A.I. (2013). Analysis of Redox Activity of Proteins on the Carbon Screen Printed Electrodes. Electronanalysis, 25(9), 2109-2116. DOI

  16. Shumyantseva, V., Bulko, T., Kuzikov, A., Masamrekh, R., & Archakov, A. (2018). Analysis of L-tyrosine based on electrocatalytic oxidative reactions via screen-printed electrodes modified with multi-walled carbon nanotubes and nanosized titanium oxide (TiO2). Amino Acids, 50, 823-829. DOI

  17. Radko, S.P., Khmeleva, S.A., Suprun, E.V., Kozin, S.A., Bodoev, N.V., Makarov A.A. et al. (2015). Physico-chemical methods for studying amyloid-β aggregation. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 9(3), 258-274. DOI

  18. Abo-Hamadb, A., AlSaadi, M.A., Hayyan, M., Juneidi, I., & Hashim, M.A. (2016). Ionic Liquid-Carbon Nanomaterial Hybrids for Electrochemical Sensor Applications: a Review. Electrochimica Acta 193 (2016) 321–343. DOI

  19. Ren, S., Wang, H., Zhang, H., Yu, L., Li, M., & Li, M. (2015). Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst. Journal of Electroanalytical Chemistry, 750, 65–73. DOI

  20. Rahi, A., Karimian, K., & Heli, H. (2016). Nanostructured materials in electroanalysis of pharmaceuticals. Analytical Biochemistry, 497, 39-47. DOI

  21. Cernat, A., Tertis¸ M., & Sandulescu, R. (2015). Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Analytica Chimica Acta, 886, 16-28. DOI
Published
2018-06-26
Section
Protocols of Experiments, Useful Models, Programs and Services