Biomedical Chemistry: Research and Methods 2022, 5(3), e00178

Algorithms for Calculation of Parameters of Electrochemical Biosensor

V.V. Shumyantseva1,2*, V.V. Pronina1

1Institute of Biomedical Chemistry, Pogodinskaya Street, 10, Moscow 119121, Russia; *e-mail: viktoria.shumyantseva@ibmc.msk.ru

2Pirogov Russian National Research Medical University, Moscow, Russia

Keywords: electrochemical biosensor; electroactive electrode surface; binding constant; DNA analysis; pharmacogenomics

DOI:10.18097/BMCRM00178

The whole version of this paper is available in Russian.

The aim of this work is to present the experimental results in the form of an algorithm for analyzing the modification of screen printed electrodes, including the possibility of its regeneration for irreversibly oxidizing biologically active compounds (drugs, DNA and proteins). A protocol was developed for quantitative analysis and study of the mechanism of drug-DNA interaction by differential pulse voltammetry, including the following parameters: complex binding constant, Gibbs free energy, and electrochemical coefficients of the toxic effect.

Figure 1. (A) Distribution diagram of functionalized carbon nanotubes by the size of their outer diameter. (B) Distribution diagram of functionalized carbon nanotubes by the size of their inner diameter. Horizontal lines represent the distribution of diameter of carbon nanotubes.
Figure 2. (A) Cyclic voltammograms of SPE modified successively with dispersions of fCNT and TiO2. The measurements were carried out with different potential sweep rates in 5 mM potassium hexacyanoferrate solution. (B) Plot of IRed against v1/2 for modified SPE/fCNT/TiO2. (SPE – screen-printed electrode, fCNT – functionalized carbon nanotubes).
Figure 3. (А) DVPs SPE/fCNT/TiO2 of various dsDNA concentrations. 100 mM potassium phosphate buffer with 50 mM NaCl as supporting electrolyte, pH 7.4. Accumulation potential of 0.4 V, time accumulation of 15 min, pulse amplitude of 0.025 V, step capacity of 0.005 V, interval time of 50 ms, modulation amplitude of 0.05 V. All potentials were referred to the Ag/AgCl reference electrode. (B) Calibration curve of peak currents against dsDNA concentrationfor guanine. (C) Calibration curve of peak currents against dsDNA concentration for adenine. (SPE – screen-printed electrode, fCNT – functionalized carbon nanotubes).
Figure 4. (А) DVPs SPE/fCNT/dsDNA and SPE/fCNT/dsDNA/Abiraterone acetate of various Abiraterone acetate concentrations. Pulse amplitude of 0.025 V, step capacity of 0.005 V, interval time of 50 ms, modulation amplitude of 0.05V. (SPE – screen-printed electrode, fCNT – functionalized carbon nanotubes).
Figure 5. DVPs SPE/fCNT/TiO2 with dsDNA concentration of 3 mg/ml. (SPE – screen-printed electrode, fCNT – functionalized carbon nanotubes).

CLOSE
Table 1. Electroanalytical characteristics of screen printed electrodes (SPE) modified with fCNT/TiO2 obtained in a 5 mM solution of potassium hexacyanoferrate. The potential values and peaks of oxidation and reduction of potassium ferricyanide are presented for a potential sweep rate of 50 mV/s. (fCNT – functionalized carbon nanotubes).

CLOSE
Table 2. Electroactive areas of SPE modified with various dispersions ((SPE – screen-printed electrode, fCNT – functionalized carbon nanotubes).

CLOSE
Table 3. Metrological and electrochemical parameters of the electrodes.

FUNDING

The work was performed within the framework of the Program for Basic Research in the Russian Federation for a long-term period (2021-2030) (№122030100168-2).

REFERENCES

  1. Mostafa M.I., Tian Y., Anjum S., Hanif S., Hosseini M., Lou B., Xu G. (2022) Comprehensive review on the electrochemical biosensors of different breast cancer biomarkers. Sensors and Actuators B: Chemical, 365, 131944. DOI
  2. Pepe M.S., Etzioni R., Feng Z., Potter J. D., Thompson M.L., Thornquist M., Winget M., Yasui Y. (2001) Phases of Biomarker Development for Early Detection of Cancer. JNCI: Journal of the National Cancer Institute, 93, 14, 1054–1061. DOI
  3. 3. Lu D., Xu Q., G. Pang G. (2019) A bombykol electrochemical receptor sensor and its kinetics. Bioelectrochemistry, 128, 263-273, 1567-5394. DOI
  4. Ronkainen N.J., Halsall H.B., HeinemanW.R. (2010) Electrochemical biosensors. Chem. Soc. Rev., 39, 1747–1763. DOI
  5. Ghosh M., Mandal S., Roy A., Mondal P., Mukhopadhyay S. K., Chakrabarty S., Chakrabarti G., Pradhan S.K. (2021) Synthesis and characterization of a novel nanocarrier for biocompatible targeting of an antibacterial therapeutic agent with enhanced activity. Journal of Drug Delivery Science and Technology, 66, 102821. DOI
  6. Randles J.E.B. (1948) A cathode-ray polarograph. Part II - The current-voltage curves. Trans Faraday Soc., 44, 327.
  7. Sevcik A. (1948) Oscillographic polarography with periodical triangular voltage. Collect Czech ChemCommun, 13, 349.
  8. Mohammadi A., Moghaddam A.B., Alikhani E., Eilkhanizadeh K., Mozaffari S. (2013) Electrochemical quantification of fluoxetine in pharmaceutical formulation using carbon nanoparticles. Micro & Nano Letters, 8, 853-857. DOI
  9. Ferapontova E.E. (2018) DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids. Annual review of analytical chemistry, 11 (1), 197–218. DOI
  10. Kuzikov, A.V., Bulko, T.V., Koroleva, P.I., Masamrekh, R.A., Babkina, S.S., Gilep, A.A., Shumyantseva, V.V. (2020) Cytochrome P450 3A4 as enzyme for drug biotransformation: the role of sensor systems modifications in electrocatalysis and electroanalysis. Biomeditsinskaya Khimiya, 66 (1), 64-70. DOI
  11. Shumyantseva, V.V., Sigolaeva, L.V., Agafonova, L.E., Bulko, T.V., Pergushov, D.V., Schacher, F.H., Archakov, A.I. (2015) Facilitated biosensing via direct electron transfer of myoglobin integrated into diblock copolymer/multi-walled carbon nanotube nanocomposites. J. Mater. Chem. B, 3(27) 5467–5477. DOI
  12. Shumkov, A. A., Suprun, E. V., Shatinina, S. Z., Lisitsa, A. V., Shumyantseva, V. V., Archakov, A. I. (2013) Gold and Silver Nanoparticles for Electrochemical Detection of Cardiac Troponin I based on Striping Voltammetry. BioNanoScience, 2 (3), 216-222. DOI
  13. Nimal R., Unal D. N., Erkmen C., Bozal-Palabiyik B., Siddiq M., Eren G., Shah A., Uslu B. (2022) Development of the electrochemical, spectroscopic and molecular docking approaches toward the investigation of interaction between DNA and anti-leukemic drug azacytidine. Bioelectrochemistry, 146, 108135,1567-5394. DOI
  14. Topkaya S.N., Kaya H.O., Cetin A.E. (2021) Electrochemical detection of linagliptin and itsinteraction with dna. Turkish J. Pharm. Sci., 18, 645–651. 24 DOI
  15. Manzano M., Viezzi S., Mazerat S., Marks R.S., Vidic J. (2018) Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus. Biosens. Bioelectron, 100, 89–95. DOI
  16. Lavín, Á., Vicente, J.D., Holgado, M., Laguna, M.F., Casquel, R., Santamaria, B., Maigler,M.V., Hernandez, A.L., Ramirez, Y. (2018) On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors. Sensors, 18, 2038. DOI
  17. Armbruster, D.A., Pry, T. (2008) Limit of blank, limit of detection and limit of quantitation. Clin.Biochem. Rev., 29, S49–S52.
  18. Bolat G. (2020) Investigation of poly(CTAB-MWCNTs) composite based electrochemical DNA biosensor and interaction study with anticancer drug Irinotecan. Microchemical Journal, 159, 105426. DOI
  19. Hasanzadeh M., Shadjou N. (2016) Pharmacogenomic Study Using Bio- and Nanobioelectrochemistry: Drug–DNA Interaction. Mater. Sci. Eng. C, 61, 1002–1017. DOI
  20. Acharya, M., Bernard, A., Gonzalez, M., Jiao, J., De Vries, R., Tran, N. (2012) Open-label, phase I, pharmacokinetic studies of abiraterone acetate in healthy men. Chemother.Pharmacol., 69, 1583−1590. DOI
  21. Gurova K., (2009) New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Futur. Oncol.,5, 1685 DOI
  22. Muti M. (2018) Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant. Talanta., 178, 1033–1039. DOI
  23. Bagni G., Osella D., Sturchio E., MasciniM. (2006) Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Anal.Chim.Acta.,81–89, 573-574. DOI
  24. Shumyantseva V.V., Bulko T.V., Tikhonova E.G., Sanzhakov M.A., Kuzikov A.V., Masamrekh R.A., Pergushov D.V., Schacher F.H., Sigolaeva L.V. (2021) Electrochemical studies of the interaction of rifampicin and nanosome/rifampicin with dsDNA. Bioelectrochemistry, 140, 107736. DOI
  25. Wani T.A., Alsaif N., Bakheit A.H., Zargar S., Al-Mehizia A.A., KhanA.A. (2020) Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Bioorg Chem., 100, 103957. DOI
  26. Nafisi S., Saboury A.A., Keramat N., Neault J.F., Tajmir-RiahiH.A. (2007) Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue. J. Mol. Struct.,827, 35–43. DOI
  27. Sirajuddin M., Ali S., BadshahA. (2013) Drug–DNA interactions and their study by UV–vis, fluorescence spectroscopies and cyclic voltammetry. J. Photochem. Photobiol. B: Biol.,124, 1–19. DOI
  28. DeDogan-Topal B., Bozal-Palabiyik B., Ozkan S.A., UsluB. (2014) Investigation of anticancer drug lapatinib and its interaction with dsDNA by electrochemical and spectroscopic techniques. Sens. Actuators B Chem.,194 185–194. DOI
  29. Temerk Y., Ibrahim M., Ibrahim H., KotbM. (2016) Interactions of an anticancer drug lomustine with single and double stranded DNA at physiological conditions analysed by electrochemical and spectroscopic methods. J. Electroanal. Chem.,769, 62–71. DOI
  30. Yazan Z., BayraktepeD.E., Dinç.E. (2020) Four-way parallel factor analysis of voltammetric four-way dataset for monitoring the etoposide-DNA interaction with its binding constant determination.Bioelectrochemistry, 134, 107525. DOI
  31. Chaires J.B., (2006) A thermodynamic signature for drug-DNA binding mode., Arch. Biochem.Biophys., 453, 26–31. DOI