Biomedical Chemistry: Research and Methods 2024, 7(3), e00225

New Highly Sensitive Methods for Electroanalysis of the Catalytic Activity of Enzymes of Medical Significance

V.V. Shumyantseva1*, L.E. Agafonova1, T.V. Bulko1, P.I. Koroleva1, A.V. Kuzikov2, R.A. Masamrekh2, T.A. Filippova1

1Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; *e-mail: viktoria.shumyantseva@ibmc.msk.ru

2Department of Biochemistry, Pirogov Russian National Research Medical University, 1 Ostrovitianova str., Moscow, 117997 Russia

Keywords: cytochrome P450; substrates; inhibitors; asparaginase; enzymatic catalysis; electrochemical analysis

DOI:10.18097/BMCRM00225

The whole version of this paper is available in Russian.

The review is devoted to new highly effective methods for analyzing the catalytic activity of enzymes of medical significance, such as cytochromes P450, trypsin, asparaginase, beta-lactamase, and nucleases. The methods are based on registration the specific activity of enzymes using electroanalytical methods. The review analyzes the experimental data obtained by the authors. Two platforms have been developed that allow quantitative measurement of catalytic activity based on the electrochemical properties of the enzyme (cytochrome P450, bactosomes, asparaginase) or substrate (trypsin, nucleases, restriction enzymes, beta-lactamase).

Figure 1. Immobilization of enzymes or substrates on electrodes to study catalytic activity.
Figure 2. Structure of the compound (2Ꞌ-{[(E)-3'-hydroxyandrost-5-en-17-ylidene]methyl}-4Ꞌ,5Ꞌ-dihydro-1Ꞌ,3Ꞌ-oxazole), which showed the greatest inhibitory activity towards cytochrome P450 17A1 in the 17α-hydroxylation reaction of pregnenolone [17, 18].
Figure 3. Two-electrode system for recording substrates or metabolites of cytochrome P450-dependent reactions. The principle of bielectrode electrochemical systems based on the use of an enzyme electrode with immobilized recombinant cytochrome P450 (or a membrane-bound form of this protein) and an indicator electrode on which the loss of substrate (A) or increase in product (B) is quantitatively determined by registration the electrochemical oxidation of these compounds during different potentials. As an example, an enzyme electrode with immobilized CYP2C9 is presented, which hydroxylates the marker substrate diclofenac with the formation of the reaction product 4ʹ-hydroxydiclofenac.
Figure 4. Methods for increasing the catalytic activity of cytochromes P450 in electrochemical systems.
Figure 5. Algorithm for electroanalysis of proteases based on the hydrolysis of peptides containing the electroactive amino acid tyrosine.
Figure 6. Differential pulse voltammetry of native plasmid DNA (-, 3 profile), DNA after exposure to specific restrictionase (-, on 4 fragments, 2 profile) and non-specific endonuclease (-, on 3-70 - mer fragments, 1 profile). As the degree of DNA fragmentation increases, the number of registered peaks corresponding to the electrooxidation of heterocyclic bases also increases, and the intensity of the maximum peak current for the electrochemical oxidation of heterocyclic bases increases.

CLOSE
Table 1. Determination of cytochrome P450 activity by electrochemical analysis of reaction products.

FUNDING

The work was performed within the framework of the Program for Basic Research in the Russian Federation for a long-term period (2021-2030) (№122030100168-2).

REFERENCES

  1. Shajhutdinova, Z., Pashirova, T., Masson, P. (2022) Kinetic processes in enzymatic nanoreactors for in vivo detoxification. Biomedicines, 10(4), 784. DOI
  2. Pashirova, T., Shaihutdinova, Z., Mansurova, M., Kazakova, R., Shambazova, D., Bogdanov, A., Tatarinov, D., Daudé, D., Jacquet, P., Chabrièûre, E., Masson, P. (2022) Enzyme nanoreactor for in vivo detoxification of organophosphates. ACS Appl. Mater. Interfaces, 14(17), 19241–19252. DOI
  3. Wohlgemuth, R. (2021) Biocatalysis — key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis. New Biotechnol., 60, 113–123. DOI
  4. Singh, R.S., Singh, T., Singh, A.K. (2019) Enzymes as Diagnostic Tools. In: Advances in Enzyme Technology (Singh, R.S., Singhania, R.R., Pandey, A., Larroche, C., eds.), Elsevier, Netherlands, pp. 225–271. DOI
  5. Zhao, W.W., Xu, J.J., Chen, H.Y. (2017) Photoelectrochemical enzymatic biosensors. Biosens. Bioelectron., 92, 294–304. DOI
  6. Klyushova, L.S., Perepechaeva, M.L., Grishanova, A.Y. (2022) The role of CYP3A in health and disease. Biomedicines, 10(11), 2686. DOI
  7. Li, Z., Jiang, Y., Guengerich, F.P., Ma, L., Li, S., Zhang, W. (2020) Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J. Biol. Chem., 295(3), 833–849. DOI
  8. di Nardo, G., Gilardi, G. (2020) Natural compounds as pharmaceuticals: The key role of cytochromes P450 reactivity. Trends Biochem. Sci., 45(6), 511–525, DOI: 10.1016/j.tibs.2020.03.004.
  9. Krishnan, S. (2020) Bioelectrodes for evaluating molecular therapeutic and toxicity properties. Curr. Opin. Electrochem., 19, 20–26. DOI
  10. Hrycay, E.G., Bandiera, S.M. (2012) The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch. Biochem. Biophys., 522(2), 71–89. DOI
  11. Guengerich, F.P. (2021) Drug Metabolism: Cytochrome P450. In: Reference Module in Biomedical Sciences. Elsevier, Netherlands. DOI
  12. Mi, L., Wang, Z., Yang, W., Huan, C., Zhou, B., Hu, Y., Liu, S. (2023) Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. TrAC, Trends Anal. Chem., 158, 116791. DOI
  13. Schneider, E., Clark, D.S. (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron., 39, 1–13. DOI
  14. Sun, X., Sun, J., Ye, Y., Ji, J., Sheng, L., Yang, D., Sun, X. (2023) Metabolic pathway-based self-assembled Au@MXene liver microsome electrochemical biosensor for rapid screening of aflatoxin B1. Bioelectrochemistry, 151, 108378. DOI
  15. Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Bulko, T.V., Archakov, A.I. (2018) From electrochemistry to enzyme kinetics of cytochrome P450. Biosens. Bioelectron., 15, 192–204. DOI
  16. Kumar, N., He, J. Rusling, J.F. (2023) Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem. Soc. Rev., 52, 5135–5171. DOI
  17. Kostin, V.A., Zolottsev, V.A., Kuzikov, A.V., Masamrekh, R.A., Shumyantseva, V.V., Veselovsky, A.V., Stulov, S.V., Novikov, R.A., Timofeev, V.P., Misharin, A.Y. (2016) Oxazolinyl derivatives of [17 (20) E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity. Steroids, 115, 114–122. DOI
  18. Archakov, A.I., Lisitsa, A.V., Ipatova, O.M., Misharin, A.Yu., Stulov, S.V., Shishova, D.K., Shumyantseva, V.V., Kuzikov, A.V., Veselovsky, A.V. (2017) Pregn-17(20)-ene derivatives with antitumor activity, Russian State Patent Agency Certificate, No. 2617698 of 26.04.2017.
  19. Makhova, A.A., Shumyantseva, V.V., Shikh, E.V., Butko, T.V., Suprun, E.V., Kuzikov, A.V., Kukes, V.G., Archakov, A.I. (2013) Regulation of the activity of drug metabolism enzymes — cytochromes P450 3A4 and 2C9 by biologically active compounds. Molekulyarnaya Meditsina, 5, 49-53.
  20. Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Kuzikov, A.V., Agafonova, L.E., Archakov, A.I. (2015) Electrochemical methods for biomedical investigations. Biomeditsinskaya Khimiya, 61(2), 188–202. DOI
  21. Shumyantseva, V.V., Makhova, A.A., Bulko, T.V., Kuzikov, A.V., Shich, E.V., Kukes, V.G., Archakov, A.I. (2015) Electrocatalytic cycle of P450 cytochromes: The protective and stimulating roles of antioxidants. RSC Adv., 5(87), 71306–71313.
  22. Shih, E.V., Fomin, Е.V., Shumyantseva, V.V., Bulko, T.V. (2012) Combined therapy of elderly patients with regard to drugs metabolism. Klinicheskaya Gerontologiya, 18(3–4), 54–58.
  23. Makhova, A.A., Shikh, E.V., Bulko, T.V., Sizova, Z.M., Shumyantseva, V.V. (2019) The influence of taurine and L-carnitine on 6 β-hydroxycortisol/cortisol ratio in human urine of healthy volunteers. Drug Metab. Pers. Ther., 34(3), 20190013. DOI
  24. Makhova, A.A., Shikh, E.V., Bulko, T.V., Komissarenko, I.A., Sizova, Zh.M., Shumyantseva, V.V. (2020) Effects of taurine and L-carnitine on the activity of cytochrome P450 3A4 in volunteers. Experimentalnaya i Klinicheskaya Farmakologiya, 83(2), 34–37. DOI
  25. Koroleva, P.I., Kuzikov, A.V., Masamrekh, R.A., Filimonov, D.A., Dmitriev, A.V., Zaviyalova, M.G., Rikova, S.M., Shich, E.V., Makhova, A.A., Bulko, T.V., Gilep, A.A., Shumyantseva, V.V. (2020) Modeling of drug-drug interactions between omeprazole and erythromycin in the cytochrome P450-dependent system in vitro. Biomeditsinskaya Khimiya, 66(3), 241–249. DOI
  26. Shumyantseva, V.V., Koroleva, P.I., Bulko, T.V., Sergeev, G.V., Usanov, S.A. (2022) Predicting drug-drug interactions by electrochemically driven cytochrome P450 3A4 reactions. Drug Metab. Pers. Ther., 37(3), 241–248. DOI
  27. Masamrekh, R.A., Kuzikov, A.V., Shcherbakov, K.A., Veselovsky, A.V., Filimonov, D.A., Dmitriev, A.V., Zavialova, M.G., Archakov, A.I., Shumyantseva, V.V., Haurychenka, Y.I., Gilep, A.A., Shkel, T.V., Strushkevich, N.V., Usanov, S.A. (2020) In vitro interactions of abiraterone, erythromycin, and CYP3A4: Implications for drug-drug interactions. Fundam. Clin. Pharmacol., 34(1), 120–130. DOI
  28. Masamrekh, R.A., Kuzikov, A.V., Filippova, T.A., Sherbakov, K.A., Veselovsky, A.V., Shumyantseva, V.V. (2022) The interactions of abiraterone and its pharmacologically active metabolite D4A with cytochrome P450 2C9 (CYP2C9). Biomeditsinskaya Khimiya, 68(3), 201–211. DOI
  29. Shumyantseva, V.V., Bulko, T.V., Koroleva, P.I., Shikh, E.V., Makhova, A.A., Kisel, M.S., Haidukevich, I.V., Gilep, A.A. (2022) Human cytochrome P450 2C9 and its polymorphic modifications: Electroanalysis, catalytic properties, and approaches to the regulation of enzymatic activity. Processes, 10(2), 383. DOI
  30. Shumyantseva, V.V., Bulko, T.V., Kuzikov, A.V., Masamrekh, R.A., Konyakhina, A.Y., Romanenko, I., Max, J.B., Köhler, M., Gilep, A.A., Usanov, S.A., Pergushov, D.V., Schacher, F.H., Sigolaeva, L.V. (2020) All-electrochemical nanocomposite two-electrode setup for quantification of drugs and study of their electrocatalytical conversion by cytochromes P450. Electrochim. Acta, 336, 135579. DOI
  31. Kuzikov, A.V., Filippova, T.A., Masamrekh, R.A. Shumyantseva, V.V. (2022) Electrochemical determination of (S)-7-hydroxywarfarin for analysis of CYP2C9 catalytic activity. J. Electroanal. Chem., 904, 115937. DOI
  32. Kuzikov, A.V., Filippova, T.A., Masamrekh, R.A., Shumyantseva, V.V. (2022) Electroanalysis of 4′-hydroxydiclofenac for CYP2C9 enzymatic assay. Electrocatalysis, 13(5), 630–640. DOI
  33. Filippova, T.A., Masamrekh, R.A., Shumyantseva, V.V., Khudoklinova, Y.Y., Kuzikov, A.V. (2023) Voltammetric analysis of (S)-O-desmethylnaproxen for determination of CYP2C9 demethylase activity. BioNanoScience, 13(3), 1278–1288. DOI
  34. Kuzikov, A.V., Filippova, T.A., Masamrekh, R.A., Shumyantseva, V.V. (2022) Biotransformation of phenytoin in the electrochemically-driven CYP2C19 system. Biophys. Chem., 291, 106894. DOI
  35. Kuzikov, A.V., Masamrekh, R.A., Filippova, T.A., Tumilovich, A.M., Strushkevich, N.V., Gilep, A.A., Khudoklinova, Y.Y., Shumyantseva, V.V. (2024) Bielectrode strategy for determination of CYP2E1 catalytic activity: Electrodes with bactosomes and voltammetric determination of 6-hydroxychlorzoxazone. Biomedicines, 12(1), 152. DOI
  36. Kuzikov, A.V., Masamrekh, R.A., Filippova, T.A., Haurychenka, Y.I., Gilep, A.A., Shkel, T.V., Strushkevich, N.V., Usanov, S.A., Shumyantseva, V.V. (2020) Electrochemical oxidation of estrogens as a method for CYP19A1 (aromatase) electrocatalytic activity determination. Electrochim. Acta, 333, 135539. DOI
  37. Tracy, T.S. (2006) Atypical cytochrome P450 kinetics: Implications for drug discovery. Drugs in R&D, 7, 349–363. DOI
  38. Alim, S., Vejayan, J., Yusoff, M.M., Kafi, A.K.M. (2018) Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: A review. Biosens. Bioelectron., 121, 125–136. DOI
  39. Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Filippova, T.A., Koroleva, P.I., Agafonova, L.E., Bulko, T.V., Archakov, A.I. (2022) Enzymology on an electrode and in a nanopore: Analysis algorithms, enzyme kinetics, and perspectives. BioNanoScience, 12, 1341–1355. DOI
  40. Shumyantseva, V.V., Koroleva, P.I., Bulko, T.V., Shkel, T.V., Gilep, A.A., Veselovsky, A.V. (2023) Approaches for increasing the electrocatalitic efficiency of cytochrome P450 3A4. Bioelectrochemistry, 149, 108277. DOI
  41. Shumyantseva, V.V., Koroleva, P.I., Gilep, A.A., Napolskii, K.S., Ivanov, Yu.D., Kanashenko, S.L., Archakov, A.I. (2022) Increasing the efficiency of cytochrome P450 3A4 electrocatalysis using electrode modification with spatially ordered anodic aluminum oxide-based nanostructures for investigation of metabolic transformations of drugs. Dokl. Biochem. Biophys., 506, 215–219. DOI
  42. Koroleva, P.I., Bulko, T.V., Agafonova, L.E., Shumyantseva, V.V. (2023) Catalytic and electrocatalytic mechanisms of cytochromes P450 in the development of biosensors and bioreactors. Biochemistry (Moscow), 88(10), 1645–1657. DOI
  43. Koroleva, P.I., Gilep, A.A., Kraevsky, S.V., Tsybruk, T.V., Shumyantseva, V.V. (2023) Improving the efficiency of electrocatalysis of cytochrome P450 3A4 by modifying the electrode with membrane protein streptolysin O for studying the metabolic transformations of drugs. Biosensors, 13(4), 457. DOI
  44. Nerimetla, R., Premaratne, G., Liu, H., Krishnan, S. (2018) Improved electrocatalytic metabolite production and drug biosensing by human liver microsomes immobilized on amine-functionalized magnetic nanoparticles. Electrochim. Acta, 280, 101–107. DOI
  45. Walker, A., Walgama, C., Nerimetla, R., Alavi, S.H., Echeverria, E., Harimkar, S.P., McIlroy, D.N., Krishnan, S. (2020) Roughened graphite biointerfaced with P450 liver microsomes: Surface and electrochemical characterizations. Colloids Surf., B, 189, 110790. DOI
  46. Vimal, A., Kumar, A. (2017) Biotechnological production and practical application of L-asparaginase enzyme. Biotechnol. Genet. Eng. Rev., 33(1), 40–61. DOI
  47. Pokrovskaya, M.V., Pokrovsky, V.S., Aleksandrova, S.S., Sokolov, N.N., Zhdanov, D.D. (2022) Molecular analysis of L-asparaginases for clarification of the mechanism of action and optimization of pharmacological functions. Pharmaceutics, 14, 599. DOI
  48. Darvishi, F., Jahanafrooz, Z., Mokhtarzadeh, A. (2022) Microbial L-asparaginase as a promising enzyme for treatment of various 516 cancers. Appl. Microbiol. Biotechnol., 106, 5335–5347. DOI
  49. Shumyantseva, V., Bulko, T., Pronina, V., Kanashenko, S., Pokrovskaya, M., Aleksandrova, S., Zhdanov, D. (2022) Electroenzymatic model system for the determination of catalytic activity of Erwinia carotovora L-asparaginase. Processes, 10(7), 1313. DOI
  50. Ćwilichowska, N., Świderska, K.W., Dobrzyń, A., Drąg, M., Poręba, M. (2022) Diagnostic and therapeutic potential of protease inhibition. Mol. Aspects Med., 88, 101144. DOI
  51. Hua, Y., Nair, S. (2015) Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications. Biochim. Biophys. Acta Mol. Basis Dis., 1852(2), 195–208. DOI
  52. Craik, C.S., Page, M.J., Madison, E.L. (2011) Proteases as therapeutics. Biochem. J., 435(1), 1–16. DOI
  53. Hotinger, J.A., Gallagher, A.H., May, A.E. (2022) Phage-related ribosomal proteases (Prps): Discovery, bioinformatics, and structural analysis. Antibiotics, 11(8), 1109. DOI
  54. Anirudhan, V., Lee, H., Cheng, H., Cooper, L., Rong, L. (2021) Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J. Med. Virol., 93(5), 2722–2734. DOI
  55. Filippova, T.A., Masamrekh, R.A., Khudoklinova, Y.Y., Shumyantseva, V.V., Kuzikov, A.V. (2024) The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie, 222, 169–194. DOI
  56. Fabry, P., Moutet, J.C. (2013) Sensitivity and Selectivity of Electrochemical Sensors. In: Chemical and Biological Microsensors: Applications in Liquid Media (Fouletier, J., Fabry, P., eds.), ISTE ltd, London – John Wiley & Sons, Inc, Hoboken, NJ, pp. 45-80. DOI
  57. Ostojić, J., Herenda, S., Bešić, Z., Miloš, M., Galić, B. (2017) Advantages of an electrochemical method compared to the spectrophotometric kinetic study of peroxidase inhibition by boroxine derivative. Molecules, 22(7), 1120. DOI
  58. Rodriguez-Rios, M., Megia-Fernandez, A., Norman, D.J., Bradley, M. (2022) Peptide probes for proteases — innovations and applications for monitoring proteolytic activity. Chem. Soc. Rev., 51(6), 2081–2120. DOI
  59. González-Fernández, E., Avlonitis, N., Murray, A.F., Mount, A.R., Bradley, M. (2016) Methylene blue not ferrocene: Optimal reporters for electrochemical detection of protease activity. Biosens. Bioelectron., 84, 82–88. DOI
  60. Zambry, N.S., Obande, G.A., Khalid, M.F., Bustami, Y., Hamzah, H.H., Awang, M.S., Aziah, I., Manaf, A.A. (2022) Utilizing electrochemical-based sensing approaches for the detection of SARS-CoV-2 in clinical samples: A review. Biosensors, 12(7), 473. DOI
  61. Filippova, T.A., Masamrekh, R.A., Shumyantseva, V.V., Latsis, I.A., Farafonova, T.E., Ilina, I.Y., Kanashenko, S.L., Moshkovskii, S.A., Kuzikov, A.V. (2023) Electrochemical biosensor for trypsin activity assay based on cleavage of immobilized tyrosine-containing peptide. Talanta, 257, 124341. DOI
  62. Anne, A., Chovin, A., Demaille, C. (2012) Optimizing electrode-attached redox-peptide systems for kinetic characterization of protease action on immobilized substrates. Observation of dissimilar behavior of trypsin and thrombin enzymes. Langmuir, 28(23), 8804–8813. DOI
  63. Ucar, A., González-Fernández, E., Staderini, M., Avlonitis, N., Murray, A.F., Bradley, M., Mount, A.R. (2020) Miniaturisation of a peptide-based electrochemical protease activity sensor using platinum microelectrodes. Analyst, 145(3), 975–982. DOI
  64. Li, R., Chen, X., Zhou, C., Dai, Q.Q., Yang, L. (2022) Recent advances in β-lactamase inhibitor chemotypes and inhibition modes. Eur. J. Med. Chem., 242, 114677. DOI
  65. di Felice, F., Micheli, G., Camilloni, G. (2019) Restriction enzymes and their use in molecular biology: An overview. J. Biosci., 44(2), 38. DOI
  66. Gonzalez, J.G., Hernandez, F.J. (2022) Nuclease activity: An exploitable biomarker in bacterial infections. Expert Rev. Mol. Diagn., 22(3), 265–294. DOI
  67. Ding, J., Qin, W. (2013) Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode. Biosens. Bioelectron., 47, 559–565. DOI
  68. Agafonova, L.E., Zhdanov, D.D., Gladilina, Y.A., Shishparenok, A.N., Shumyantseva, V.V. (2024) Electrochemical approach for the analysis of DNA degradation in native DNA and apoptotic cells. Heliyon, 10(3), e25602. DOI