Metal-Organic Framework Structures in Modern Research: Medicine, Diagnostics, Ecology

Main Article Content

Yu.V. Tumanov
P.P. Gladyshev
A.A. Sergeev
A.V. Zaykovskaya

Abstract

The review presents modern technological developments of means to indicate viruses and toxins using new nanomaterials based on frame structures. The synthesis and functionalization of metal-organic compounds of a frame structure (MOCs) and covalent organic frameworks (COF) are considered as well as the latest achievements in biomedical fields, including the delivery of drugs, nucleic acids, proteins and dyes for cancer therapy, bioimaging, antimicrobial drugs, biosensors and biocatalysis. New trends and promising areas in the development of biomedical materials based on MOC/COF are discussed. Data on the application of new biotechnological products based on simeconductor nanocrystals (quantum dots) and their composites as part of MOCs in solving the problems of modern disease diagnostics that play a strategic role in the development of nanotechnology, biotechnology and nanomedicine are presented. Issues related to the recognition of biomolecules using hybrid MOC/COF structures are discussed. The use of QD nanocomposites with other carbon-based, grapheme-based or MOC-based nanomaterials resulted in the development of new systems for bioimaging, drug delivery, optogenetics and theranostics. Undoubtedly, the rapidly accumulating data on the behavior of QD/MOC in analytical systems in vitro will increase knowledge for the advancement of QD nanotechnology in research in vivo and clinical application.

Article Details

How to Cite
Tumanov, Y., Gladyshev, P., Sergeev, A., & Zaykovskaya, A. (2025). Metal-Organic Framework Structures in Modern Research: Medicine, Diagnostics, Ecology. Biomedical Chemistry: Research and Methods, 8(3), e00270. https://doi.org/10.18097/BMCRM00270
Section
REVIEWS

References

  1. Mohammad, R. S., Navid, R., Masoud, M., Francis, V., Leonid, G. V., Rafael,L. (2021) Metal-organic frameworks (MOFs) for cancer therapy. Materials,14(23), 7277. DOI
  2. Kargozar, S., Hoseini, S. J., Milan, P. B., Hooshmand, S., Kim, H.-W.,Mozafari, M. (2020) Quantum Dots: A Review from Concept to Clinic. SpecialIssue: AFOB XV – Nanomaterials for Biomedical Applications, 15(12),2000117. DOI
  3. Liu, S.-L., Wang, Z.-G., Xie, H.-Y., Liu, An-An, Lamb, D. C., Pang,D.-W. (2020) Single-Virus Tracking: From Imaging Methodologies toVirological Applications. Chem. Rev., 120, 1936−1979. DOI
  4. Rehan, F., Zhang, M., Fang, J., Greish, K. (2024) Therapeutic Applicationsof Nanomedicine: Recent Developments and Future Perspectives. Molecules,29(9), 2073. DOI
  5. Cote, A. P., Benin, A. I., Ockwig, N. W., O’Keeffe, M., Matzger, A. J., Yaghi,O. M. (2005) Porous, crystalline, covalent organic frameworks. Science, 310,1166–1170. DOI
  6. Wu, J., Liu, H., Chen, W., Ma, B., Ju, H. (2023) Device integration ofelectrochemical biosensors. Nat. Rev. Bioeng, 1(5), 346-360. DOI
  7. Li, X., Zheng, X., Yuan, Y., Deng, J., Su, L., Xu, K. (2025) A review ofresearch progress on COF-based biosensors in pathogen detection. Anal. Chim.Acta, 1342, 343605. DOI
  8. Afshariazar, F., Morsali, A. (2021) A dual-response regenerable luminescent2D-MOF for nitroaromatic sensing via target-modulation of active interactionsites. J. Mater. Chem. C, 9, 12849–12858. DOI
  9. Huo, Y. P., Liu, S., Gao, Z. X., Ning, B. A., Wang, Y. (2021) State-of-the-artprogress of switch fluorescence biosensors based on metal-organic frameworksand nucleic acids. Mikrochim Acta, 188(5), 168. DOI
  10. Wang, X., Ye, N. (2017) Recent advances in metal-organic frameworksand covalent organic frameworks for sample preparation and chromatographicanalysis. Electrophoresis, 38(24), 3059-3078. DOI
  11. Zuliani, A., Khiar, N., Carrillo-Carrión, C. (2023) Recent progress ofmetal–organic frameworks as sensors in (bio)analytical fields: towards realworldapplications. Anal. Bioanal. Chem., 415, 2005–2023. DOI
  12. Liang, H., Wang, L., Yang, Y., Song, Y., Wang, L. (2021) A novelbiosensor based on multienzyme microcapsules constructed from covalentorganicframework. Biosens. Bioelectron., 193, 113553. DOI
  13. Yue, Y., Ji, D., Liu, Y., Wei, D. (2024) Chemical Sensors Based onCovalent Organic Frameworks. Chemistry, 30(3), e202302474. DOI
  14. Păun, C., Motelică, L., Ficai, D., Ficai, A., Andronescu, E. (2023) Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. Materials(Basel), 16(18), 6143. DOI
  15. Theyagarajan, K., Kim, Y. J. (2023) Recent Developments in the Designand Fabrication of Electrochemical Biosensors Using Functional Materials andMolecules. Biosensors (Basel), 13(4), 424. DOI
  16. Deng, Y., Wang, Y., Xiao, X., Saucedo, B. J., Zhu, Z., Xie, M., Xu, X., Yao,K., Zhai, Y., Zhang, Z., Chen, J. (2022) Progress in Hybridization of CovalentOrganic Frameworks and Metal-Organic Frameworks. Small, 18(38), e2202928. DOI
  17. Saboorizadeh, B., Zare-Dorabei, R., Safavi, M., Safarifard, V. (2024)Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery,Biosensing, and Therapy: A Comprehensive Review. Langmuir., 40(43), 22477-22503. DOI
  18. Moghadam, P. Z. Li, A. Wiggin, S. B. Tao, A. Maloney, A. G. P. Wood,P. A. Ward, S. C. Fairen-Jimenez, D. (2017) Development of a CambridgeStructural Database Subset: A Collection of Metal–Organic Frameworks forPast, Present, and Future. Chem. Mater, 29, 2618–2625. DOI
  19. Majumdar, S., Moosavi, S. M., Jablonka, K. M., Ongari, D., Smit, B. (2021)Diversifying Databases of Metal Organic Frameworks for High-ThroughputComputational Screening. ACS Appl. Mater. Interfaces, 13, 61004–61014. DOI
  20. Wang, Q., Sun, Y., Li, S., Zhang, P., Yao, Q. (2020) Synthesis andmodification of ZIF-8 and its application in drug delivery and tumor therapy.RSC Adv., 10, 37600-37620. DOI
  21. Dutta, A., Pan, Y., Liu, J.Q., Kumar, A. (2021) Multicomponent isoreticularmetal-organic frameworks: Principles, current status and challenges. Coord.Chem. Rev., 445, 214074. DOI
  22. Wang, B., Cote, A. P., Furukawa, H., O’Keeffe, M., Yaghi, O. M. (2002)Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxidereservoirs. Nature, 453(7192), 207–211. DOI
  23. Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P. L.,Lee, J. H., Chang, J. S., Jhung, S. H., Ferey, G. (2006) Hydrogen storage in thegiant-pore metal-organic frameworks MIL-100 and MIL-101. Angew. Chem.Int. Ed. Engl, 45(48), 8227–8231. DOI
  24. Ma, S., Sun, D., Simmons, J. M., Collier, C. D., Yuan, D. Q., Zhou, H. C.(2008) Metal-organic framework from an anthracene derivative containingnanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc, 130(3),1012–1016. DOI
  25. Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga,S., Lillerud, K. P. (2008) A new zirconium inorganic building brick formingmetal organic frameworks with exceptional stability. J. Am. Chem. Soc,130(42), 13850–13851. DOI
  26. Jiao, L., Seow, J. Y. R., Skinner, W. S., Wang, Z. U., Jiang, H. L. (2019)Metal-organic frameworks: structures and functional applications. Mater. Today,27, 43–68. DOI
  27. Pashazadeh-Panahi, P., Belali, S., Sohrabi, H., Oroojalian, F., Hashemzaei,M., Mokhtarzadeh, A., de la Guardia, M. (2021) Metal-organic frameworksconjugated with biomolecules as efficient platforms for development ofbiosensors. TrAC Trends Anal. Chem., 141, 116285. DOI
  28. Jassal, A. K., Kajal, P. (2024). Quantum Dots@Metal–Organic FrameworksComposites. In: Thomas, S., Das, P., Ganguly, S. (eds) Quantum Dots BasedNanocomposites. Engineering Materials. Springer, Cham. DOI
  29. Jia, J., Zhang, S., Wen, K., Li, Q. (2019) Nano-scaled zeolitic imidazoleframework-8 as an efficient carrier for the intracellular delivery of RNase Ain cancer treatment. Int. J. Nanomedicine, 14, 9971–9981. DOI
  30. Teplensky, M. H., Fantham, M., Poudel, C., Hockings, C., Lu, M., Guna,A., Aragones-Anglada, M., Moghadam, P. Z., Li, P., Farha, O. K., Bernaldo deQuirós, F. S., Richards, F. M., Jodrell, D. I., Kaminski, S. G., Kaminski, C. F.,Fairen-Jimenez, D. (2019) A highly porous metal-organic framework systemto deliver payloads for gene knockdown. Chem., 5(11), 2926–2941. DOI
  31. Shi, L., Wu, J., Qiao, X., Ha, Y., Li, Y., Peng, C., Wu, R. (2020) In situbiomimetic mineralization on ZIF-8 for smart drug delivery. ACS Biomater. Sci.Eng, 6(8), 4595–4603. DOI
  32. Zhang, Y., Lai, L., Liu, Y., Chen, B., Yao, J., Zheng, P., Pan, Q., Zhu, W.(2022) Biomineralized cascade enzyme-encapsulated ZIF-8 nanoparticlescombined with antisense oligonucleotides for drug-resistant bacteria treatment.ACS Appl. Mater. Interfaces, 14(5), 6453–6464. DOI
  33. Abdelhamid, H. N., Dowaidar, M., Langel, Ü. (2020) Carbonized chitosanencapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticlesfor gene delivery. Microporous Mesoporous Mater, 302, 110200. DOI
  34. Khalilian, S.F., Tohidi, M., Rastegari, B. (2020) Synthesis of abiocompatible nanoporous zeolitic imidazolate framework-8 in the presence ofGum Arabic inspired by the biomineralization process. CrystEngComm, 22(10),1875–1884. DOI
  35. Ren, L., Xiao, X., Chen, Y., Yu, Y., Zhang, Q., Liu, R., Xu, W. (2019)Preparation of ZIF-8/natural plant fiber composites via biomimeticmineralization for highly efficient removal of formaldehyde. ChemistrySelect,4(42), 12294–12303. DOI
  36. Velásquez-Hernández, M. J., Astria, E., Winkler, S., Liang, W., Wiltsche, H.,Poddar A., Shukla R., Prestwich G., Paderi J., Salcedo-Abraira P., AmenitschH., Horcajada P., Doonan, C. J., Falcaro, P. (2020) Modulation of metalazolateframeworks for the tunable release of encapsulated glycosaminoglycans.Chem Sci., 11(39), 10835–10843. DOI
  37. Li, S., Dharmarwardana, M., Welch, R. P., Ren, Y., Thompson, C. M.,Smaldone R. A., Gassensmith, J. J. (2016) Template-directed synthesis ofporous and protective core-shell bionanoparticles. Angew. Chem. Int. Ed. Engl,55(36), 10691–10696. DOI
  38. Liang, K., Richardson, J. J., Cui, J., Caruso, F., Doonan, C. J., Falcaro, P.(2016) Metal–organic framework coatings as cytoprotective exoskeletons forliving cells. Adv. Mater, 28(36), 7910–7914. DOI
  39. Liang, K., Richardson, J. J., Doonan, C. J., Mulet, X., Ju, Y., Cui, J.,Caruso, F., Falcaro, P. (2017) An enzyme-coated metal–organic frameworkshell for synthetically adaptive cell survival. angewandte chemie internationaledition. Angew. Chem. Int. Ed. Engl, 56(29), 8510–8515. DOI
  40. Li, Y., Zhang, K., Liu, P., Chen, M., Zhong, Y., Ye, Q., Wei, M. Q., Zhao, H.,Tang, Z. (2019) Encapsulation of plasmid DNA by nanoscale metal–organicframeworks for efficient gene transportation and expression. Adv. Mater,31(29), e1901570. DOI
  41. Polash, S. A., Garlick-Trease, K., Pyreddy, S., Periasamy, S., Bryant,G., Shukla, R. (2023) Amino acid-coated zeolitic imidazolate framework fordelivery of genetic material in prostate cancer cell. Molecules, 28(12), 4875. DOI
  42. Alyami, M. Z., Alsaiari, S. K., Li, Y., Qutub, S. S., Aleisa, F.A., Sougrat,R., Merzaban, J. S., Khashab, N. M. (2020) Cell-type-specific CRISPR/Cas9delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc, 142(4),1715–1720. DOI
  43. Alsaiari, S. K., Patil, S., Alyami, M., Alamoudi, K. O., Aleisa, F. A.,Merzaban, J. S., Li, M., Khashab, N. M. (2018) Endosomal escape and deliveryof CRISPR/Cas9 genome editing machinery enabled by nanoscale zeoliticimidazolate framework. J. Am. Chem. Soc, 140(1), 143–146. DOI
  44. Liu, C., Xu, X., Koivisto, O., Zhou, W., Jacquemet, G., Rosenholm, J. M.,Zhang, H. (2021) Improving the knock-in efficiency of the MOF-encapsulatedCRISPR/Cas9 system through controllable embedding structures. Nanoscale,13(39), 16525–16532. DOI
  45. Poddar, A., Pyreddy, S., Carraro, F., Dhakal, S., Rassell, A., Field, M. R.,Reddy, T. S., Falcaro, P., Doherty, C. M., Shukla, R. (2020) ZIF-C for targetedRNA interference and CRISPR/Cas9 based gene editing in prostate cancer.Chem. Commun. (Camb), 56(98), 15406–15409. DOI
  46. Lee, H. J., Wark, A. W., Corn, R. M. (2008) Microarray methods for proteinbiomarker detection. Analyst, 133, 975. DOI
  47. Tran, V. A., Le, V. T., Doan, V. D., Giang, N. L. Vo. (2023) Utilization ofFunctionalized Metal-Organic Framework Nanoparticle as Targeted DrugDelivery System for Cancer Therapy. Pharmaceutics, 15(3), 931. DOI
  48. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors thatdisplay cloned antigens on the virion surface. Science, 228(4705), 1315-1317. DOI
  49. Petrenko, V. A., Smith, G. P. (2000) Phages from landscape libraries assubstitute antibodies. Protein Eng, 13, 589–592. DOI
  50. Zhang, W., Arramel, A., Wong, P. K. J., Zhang, L., Zheng, J., Zhang, W.,Zhang, H., Yan, X., Qi, J., Li, J. (2020) Core–shell hybrid zeolitic imidazolateframework-derived hierarchical carbon for capacitive deionization. J. Mater.Chem. A, 8, 14653–14660. DOI
  51. Biswal, B. P., Shinde, D. B., Pillai, V. K., Banerjee, R. (2013) Stabilizationof graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolateframework nanocrystals for photoluminescence tuning. Nanoscale, 5, 10556–10561. DOI
  52. Reali, S., Najib, E. Y., Treuerné Balázs, K. E., Tan, A. C. H., Váradi, L.,Hibbs, D. E., Groundwater, P. W. (2019) Novel diagnostics for point-of-carebacterial detection and identification. RSC Adv, 9, 21486-21497. DOI
  53. Davydova, A., Vorobjeva, M., Pyshnyi, D., Altman, S., Vlassov, V.,Venyaminova, A. (2016) Aptamers against pathogenic microorganisms. Crit.Rev. Microbiol, 42(6), 847–865. DOI
  54. Anderson, G. P., Glaven, R. H., Algar, W. R., Susumu, K., Stewart, M. H.,Medintz, I. L., Goldman, E. R. (2013) Single domain antibody–quantum dotconjugates for ricin detection by both fluoroimmunoassay and surface plasmonresonance. Anal. Chim. Acta, 786, 132–138. DOI
  55. Fetter, L., Richards, J., Daniel, J., Roon, L., Rowland, T. J., Bonham, A. J.(2015) Electrochemical aptamer scaffold biosensors for detection of botulismand ricin toxins. Chem. Commun., 51, 15137–15140. DOI
  56. Lamont, E. A., He, L. L., Warriner K., Labuza, T. P., Sreevatsan, S. (2011) Asingle DNA aptamer functions as a biosensor for ricin. Analyst, 136, 3884–3895. DOI
  57. Guryev, E.L., Shanwar, S., Zvyagin, A.V., Deyev, S.M., Balalaeva, I.V.(2021) Photoluminescent Nanomaterials for Medical Biotechnology. ActaNaturae, 13(2), 16-31. DOI
  58. Park, J. W., Lee, S. J., Choi, E. J., Kim, J., Song, J. Y., Gu, M. B. (2014)An ultra-sensitive detection of a whole virus using dual aptamers developedby immobilization-free screening. Biosens. Bioelectron., 51, 324-329. DOI
  59. Tumanov, Yu.V., Boldyrev, A.N., Autenshlyus, A.I. Medical biotechnology:diagnostics of diseases and development of drugs, NGTU, Novosibirsk, 2016,214 pp.
  60. Bi, S., Yue, S., Zhang, S. (2017) Hybridization chain reaction: a versatilemolecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev.,46(14), 4281-4298. DOI
  61. Bardajee, G. R., Zamani, M., Mahmoodian, H., Elmizadeh, H., Yari,H., Jouyandeh, L., Shirkavand, R., Sharifi, M. (2022) Capability of novelfluorescence DNA-conjugated CdTe/ZnS quantum dots nanoprobe forCOVID-19 sensing. Spectrochim. Acta A. Mol. Biomol. Spectrosc, 269,120702. DOI
  62. Hötzer, B., Medintz, I. L., Hildebrandt, N. (2012) Fluorescence inNanobiotechnology: Sophisticated Fluorophores for Novel Applications. Small,8, 2297. DOI
  63. Dasilva, N., Díez, P., Matarraz, S., González-González, M., Paradinas, S.,Orfao, A., Fuentes, M. (2012) Biomarker Discovery by Novel Sensors Based onNanoproteomics Approaches. Sensors, 12, 2284. DOI
  64. Sandana Mala, J. G., Rose, C. (2014) Facile production of ZnS quantumdot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J. Biotechnol, 170,73–78. DOI
  65. Zorab, M. M., Mohammadjani, N., Ashengroph, M., Alavi, M. (2023)Biosynthesis of Quantum Dots and Their Therapeutic Applications in theDiagnosis and Treatment of Cancer and SARS-CoV-2. Adv. Pharm. Bull, 13(3),411–422. DOI
  66. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R.,Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M. G. (1997) (CdSe) ZnScore−shell quantum dots: synthesis and characterization of a size series ofhighly luminescent nanocrystallites. J. Phys. Chem., B, 101, 9463–9475. DOI
  67. Wang, J., Mora-Seró, I., Pan, Z., Zhao, K., Zhang, H., Feng, Y., Yang, G.,Zhong, X., Bisquert, J. (2013) Core/shell colloidal quantum dot exciplex statesfor the development of highly efficient quantum-dot-sensitized solar cells. J.Am. Chem. Soc, 135, 15913. DOI
  68. Kaur, A., Dhakal, S. (2020) Recent applications of FRET-based multiplexedtechniques. Trac-Trends Anal. Chem., 123, 115777. DOI
  69. Racca, L., Cauda, V. (2021) Remotely Activated Nanoparticles forAnticancer Therapy. Nano-Micro Lett, 13, 11. DOI
  70. Lidke, D. S., Nagy, P., Heintzmann, R., Arndt-Jovin, D. J., Post, J. N.,Grecco, H. E., Jares-Erijman, E. A., Jovin, T. M. (2004) Quantum Dot LigandsProvide New Insights into erbB/HER Receptor−Mediated Signal Transduction.Nat. Biotechnol, 22, 198−203. DOI
  71. Srinivasan, C., Lee, J., Papadimitrakopoulos, F., Silbart, L. K., Zhao, M.,Burgess, D. J. (2006) Labeling and Intracellular Tracking of Functionally ActivePlasmid DNA with Semiconductor Quantum Dots. Mol. Ther, 14, 192−201. DOI
  72. Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N.,Peale, F., Bruchez, M. P. (2003) Immunofluorescent Labeling of Cancer MarkerHer2 and Other Cellular Targets with Semiconductor Quantum Dots. Nat.Biotechnol, 21, 41−46. DOI
  73. Chen, C., Peng, J., Xia, H., Wu, Q., Zeng, L., Xu, H., Tang, H., Zhang,Z., Zhu, X., Pang, D., et al. (2010) Quantum-Dot-Based ImmunofluorescentImaging of HER2 and ER Provides New Insights into Breast CancerHeterogeneity. Nanotechnology, 21, 095101. DOI
  74. Chen, C., Xia, H. S., Gong, Y. P., Peng, J., Peng, C. W., Hu, M. B., Zhu, X.B., Pang, D. W., Sun, S. R., Li, Y. (2010) The Quantitative Detection of TotalHER2 Load by Quantum Dots and the Identification of a New Subtype ofBreast Cancer with Different 5-Year Prognosis. Biomaterials, 31, 8818−8825. DOI
  75. Chen, C., Liu, S. L., Cui, R., Huang, B. H., Tian, Z. Q., Jiang, P., Pang, D.W., Zhang, Z. L. (2008) Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking. J. Phys. Chem. C,112(48), 18904−18910. DOI. org/10.1021/jp807074t
  76. Gao, X., Wang, T., Wu, B., Chen, J., Chen, J., Yue, Y., Dai, N., Chen, H.,Jiang, X. (2008) Quantum Dots for Tracking Cellular Transport of Lectin-Functionalized Nanoparticles. Biochem. Biophys. Res. Commun., 377, 35−40. DOI
  77. Liu, S.-L., Wang, Z.-G., Xie, H.-Y., Liu, A.-A., Lamb, D. C., Pang,D.-W. (2020) Single-Virus Tracking: From Imaging Methodologies toVirological Applications. Chem. Rev., 120, 1936−1979. DOI
  78. Kargozar, S., Hoseini, S. J., Milan, P. B., Hooshmand, S., Kim, H.-W.,Mozafari, M. (2020) Quantum Dots: A Review from Concept to Clinic.Biotechnol. J., 15(12), e2000117. DOI
  79. Lim, J., Bae, W. K., Kwak J., Lee, S., Lee, C., Char, K. (2012) Towardszero-threshold optical gain using charged semiconductor quantum dots. Optical.Mater. Express, 2, 594-698. DOI
  80. Vasil’ev, R. B., Dirin, D. N. Kvantovye tochki: sintez, svojstva, primenenie,Metodicheskie materialy. MGU im. M.V. Lomonosova: Moskva, 2007. 34 s.
  81. Poddar, A., Conesa, J. J., Liang, K., Dhakal, S., Reineck, P., Bryant, G.,Pereiro, E., Ricco, R., Amenitsch, H., Doonan, C., Mulet, X., Doherty, C. M.,Falcaro, P., Shukla, R. (2019) Encapsulation, visualization and expression ofgenes with biomimetically mineralized zeolitic imidazolate framework-8 (ZIF-8). Small, 15(36), e1902268. DOI
  82. Maysinger, D., Ji, J., Hutter, E., Cooper, E. (2015) Nanoparticle-Based andBioengineered Probes and Sensors to Detect Physiological and PathologicalBiomarkers in Neural Cells. Front. Neurosci, 9, 480. DOI
  83. Liu, T., Xing, R., Zhou, Y.-F., Zhang, J., Su, Y.-Y., Zhang, K.-Q., He, Y.,Sima, Y.-H., Xu, S.-Q. (2014) Hematopoiesis toxicity induced by CdTe quantumdots determined in an invertebrate model organism. Biomaterials, 35, 2942. DOI
  84. Xu, G., Zeng, S., Zhang, B., Swihart, M. T., Yong, K.-T., Prasad, P. N.(2016) New Generation Cadmium-Free Quantum Dots for Biophotonics andNanomedicine. Chem. Rev., 116, 12234. DOI
  85. Khan, Z. U., Khan, L. U., Brito, H. F., Gidlund, M., Malta, O. L., DiMascio, P. (2023) Colloidal Quantum Dots as an Emerging Vast Platform andVersatile Sensitizer for Singlet Molecular Oxygen Generation. ACS Omega,8(38), 34328-34353. DOI
  86. Liu, S.-L., Wang, Z.-G., Xie, H.-Y., Liu, A.-A., Lamb, D. C., Pang,D.-W. (2020) Single-Virus Tracking: From Imaging Methodologies toVirological Applications. Chem. Rev., 120(3), 1936–1979. DOI
  87. Bilan, R., Nabiev, I., Sukhanova, A. (2016) Quantum Dot-Based Nanotoolsfor Bioimaging, Diagnostics, and Drug Delivery. Chembiochem, 17(22), 2103-2114. DOI
  88. Srinivasan, C., Lee, J., Papadimitrakopoulos, F., Silbart, L. K., Zhao, M.,Burgess, D. J. (2006) Labeling and intracellular tracking of functionally activeplasmid DNA with semiconductor quantum dots. Mol. Ther, 14, 192–201. DOI
  89. Shirahata, N. Nanoparticle Biomarkers Adapted for Near-InfraredFluorescence Imaging. In: Wakayama, Y., Ariga, K. (eds) System-MaterialsNanoarchitectonics. NIMS Monographs. Springer: Tokyo, 2022. DOI
  90. Păun, C., Motelică, L., Ficai, D., Ficai, A., Andronescu, E. (2023) Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. Materials(Basel), 16(18), 6143. DOI
  91. Alli, U., Hettiarachchi, S., Kellici, S. (2020) Chemical Functionalisation of2D Materials by Batch and Continuous Hydrothermal Flow Synthesis. Chem.–Eur. J., 26, 6447–6460. DOI
  92. Abderrahmane, A., Woo, C., Ko, P.-J. (2022) Low Power ConsumptionGate-Tunable WSe2/SnSe2 van der Waals Tunnel Field-Effect Transistor.Electronics, 11(5), 833. DOI
  93. Abderrahmane, A., Jung, P.-G., Woo, C., Ko, P. J. (2022) Effect of GateDielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor. Crystals, 12(9), 1301. DOI
  94. Vu, C-A., Chen, W-Y. (2019) Field-effect transistor biosensors forbiomedical applications: recent advances and future prospects. Sensors, 19(19),4214. DOI
  95. Vu, C. A., Chen, W. Y. (2020) Predicting Future Prospects of Aptamersin Field-Effect Transistor Biosensors. Molecules, 25(3), 680. DOI
  96. Syedmoradi, L., Ahmadi, A., Norton, M. L., Omidfar, K. (2019) A review onnanomaterial-based field effect transistor technology for biomarker detection.Mikrochim Acta, 186(11), 739. DOI
  97. Panahi, A., Sadighbayan, D., Forouhi, S., Ghafar-Zadeh, E. (2021) RecentAdvances of Field-Effect Transistor Technology for Infectious Diseases.Biosensors (Basel), 11(4), 103. DOI
  98. Fazio, E., Spadaro, S., Corsaro, C., Neri, G, Leonardi, S. G., Neri, F.,Lavanya, N., Sekar, C., Donato, N., Neri, G. (2021) Metal-Oxide BasedNanomaterials: Synthesis, Characterization and Their Applications in Electricaland Electrochemical Sensors. Sensors (Basel), 21(7), 2494. DOI
  99. Bungon, T., Haslam, C., Damiati, S., O’Driscoll, B., Whitley, T., Davey,P., Siligardi, G., Charmet, J., Awan, S. A. (2021) Graphene FET Sensors forAlzheimer’s Disease Protein Biomarker Clusterin Detection. Front. Mol.Biosci., 8, 651232. DOI
  100. Ivanov, Yu. D., Pleshakova, T. O., Kozlov, A. F., Malsagova, K. A., Krohin,N. V., Shumyantseva, V. V., Shumov, I. D., Popov, V. P., Naumova, O. V., Fomin,B. I., Nasimov, D. A., Aseev, A. L., Archakov, A. I. (2012) SOI nanowire for thehigh-sensitive detection of HBsAg and α-fetoprotein. Lab on a Chip, 12(23),5104-5111. DOI
References 101 to 337 are available in the PDF version of the article.